Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 12(1): 11238, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851041

ABSTRACT

Vertebrate growth can be phenotypically plastic in response to predator-prey and competitive interactions. It is unknown however, if it can be plastic in response to mutualistic interactions. Here we investigate plasticity of vertebrate growth in response to variation in mutualistic interactions, using clown anemonefish and their anemone hosts. In the wild, there is a positive correlation between the size of the fish and the size of the anemone, but the cause of this correlation is unknown. Plausible hypotheses are that fish exhibit growth plasticity in response to variation in food or space provided by the host. In the lab, we pair individuals with real anemones of various sizes and show that fish on larger anemones grow faster than fish on smaller anemones. By feeding the fish a constant food ration, we exclude variation in food availability as a cause. By pairing juveniles with artificial anemones of various sizes, we exclude variation in space availability as a single cause. We argue that variation in space availability in conjunction with host cues cause the variability in fish growth. By adjusting their growth, anemonefish likely maximize their reproductive value given their anemone context. More generally, we demonstrate vertebrate growth plasticity in response to variation in mutualistic interactions.


Subject(s)
Anemone , Sea Anemones , Animals , Fishes , Reproduction , Sea Anemones/physiology , Symbiosis/physiology
2.
Behav Processes ; 181: 104276, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33091543

ABSTRACT

In some animal societies, access to breeding depends on the individual's position in a hierarchy, which often depends on an individual's size. In such societies, individuals may try to outgrow one another to attain a higher rank by engaging in a form of strategic growth (competitive growth). This suggests that members of the hierarchy can track changes in the growth and size of potential competitors and respond accordingly. The clown anemonefish, Amphiprion percula, is one species known to exhibit competitive growth at the initiation of size hierarchies. Here, we use 5 combinations of sensory cues to determine which cues must be available for individuals to engage in competitive growth. Our results show that mechanosensory (pressure and/or touch) cues or unobstructed interactions are necessary for competitive growth to occur. This study provides an understanding of the relationship between sensory cues and phenotypic responses to different social contexts.


Subject(s)
Cues , Perciformes , Animals
SELECTION OF CITATIONS
SEARCH DETAIL