Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Hepatology ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39250463

ABSTRACT

BACKGROUND AND AIMS: Hexokinases (HKs), a group of enzymes catalyzing the first step of glycolysis, have been shown to play important roles in liver metabolism and tumorigenesis. Our recent studies identified HKDC1 as a top candidate associated with liver cancer metastasis. We aimed to compare its cell type specificity with other HKs upregulated in liver cancer and investigate the molecular mechanisms underlying its involvement in liver cancer metastasis. APPROACH AND RESULTS: We found that, compared to HK1 and HK2, the other two commonly upregulated HKs in liver cancer, HKDC1 was most strongly associated with the metastasis potential of tumors and organoids derived from two liver cancer mouse models we previously established. RNA in situ hybridization and single-cell RNA-seq analysis revealed that HKDC1 was specifically upregulated in malignant cells in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) patient tumors, whereas HK1 and HK2 were widespread across various tumor microenvironment lineages. An unbiased metabolomic profiling demonstrated that HKDC1 overexpression in HCC cells led to metabolic alterations distinct from those from HK1 and HK2 overexpression, with HKDC1 particularly impacting the tricarboxylic acid (TCA) cycle. HKDC1 was prometastatic in HCC orthotopic and tail vein injection mouse models. Molecularly, HKDC1 was induced by hypoxia and bound to glycogen synthase kinase 3ß to stabilize ß-catenin, leading to enhanced stemness of HCC cells. CONCLUSIONS: Overall, our findings underscore HKDC1 as a prometastatic HK specifically expressed in the malignant compartment of primary liver tumors, thereby providing a mechanistic basis for targeting this enzyme in advanced liver cancer.

2.
Sci Adv ; 9(40): eadg9959, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801507

ABSTRACT

Lentiviral vector (LV)-based gene therapy holds promise for a broad range of diseases. Analyzing more than 280,000 vector integration sites (VISs) in 273 samples from 10 patients with X-linked severe combined immunodeficiency (SCID-X1), we discovered shared LV integrome signatures in 9 of 10 patients in relation to the genomics, epigenomics, and 3D structure of the human genome. VISs were enriched in the nuclear subcompartment A1 and integrated into super-enhancers close to nuclear pore complexes. These signatures were validated in T cells transduced with an LV encoding a CD19-specific chimeric antigen receptor. Intriguingly, the one patient whose VISs deviated from the identified integrome signatures had a distinct clinical course. Comparison of LV and gamma retrovirus integromes regarding their 3D genome signatures identified differences that might explain the lower risk of insertional mutagenesis in LV-based gene therapy. Our findings suggest that LV integrome signatures, shaped by common features such as genome organization, may affect the efficacy of LV-based cellular therapies.


Subject(s)
Genetic Vectors , X-Linked Combined Immunodeficiency Diseases , Humans , Genetic Vectors/genetics , Genetic Therapy , Retroviridae/genetics , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy , T-Lymphocytes
3.
Nature ; 620(7972): 200-208, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37407815

ABSTRACT

Cancer cells evade T cell-mediated killing through tumour-immune interactions whose mechanisms are not well understood1,2. Dendritic cells (DCs), especially type-1 conventional DCs (cDC1s), mediate T cell priming and therapeutic efficacy against tumours3. DC functions are orchestrated by pattern recognition receptors3-5, although other signals involved remain incompletely defined. Nutrients are emerging mediators of adaptive immunity6-8, but whether nutrients affect DC function or communication between innate and adaptive immune cells is largely unresolved. Here we establish glutamine as an intercellular metabolic checkpoint that dictates tumour-cDC1 crosstalk and licenses cDC1 function in activating cytotoxic T cells. Intratumoral glutamine supplementation inhibits tumour growth by augmenting cDC1-mediated CD8+ T cell immunity, and overcomes therapeutic resistance to checkpoint blockade and T cell-mediated immunotherapies. Mechanistically, tumour cells and cDC1s compete for glutamine uptake via the transporter SLC38A2 to tune anti-tumour immunity. Nutrient screening and integrative analyses show that glutamine is the dominant amino acid in promoting cDC1 function. Further, glutamine signalling via FLCN impinges on TFEB function. Loss of FLCN in DCs selectively impairs cDC1 function in vivo in a TFEB-dependent manner and phenocopies SLC38A2 deficiency by eliminating the anti-tumour therapeutic effect of glutamine supplementation. Our findings establish glutamine-mediated intercellular metabolic crosstalk between tumour cells and cDC1s that underpins tumour immune evasion, and reveal glutamine acquisition and signalling in cDC1s as limiting events for DC activation and putative targets for cancer treatment.


Subject(s)
Amino Acid Transport System A , Dendritic Cells , Glutamine , Neoplasms , Signal Transduction , Amino Acid Transport System A/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Glutamine/metabolism , Neoplasms/immunology , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism
4.
Nat Commun ; 14(1): 2581, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142594

ABSTRACT

Many signaling and other genes known as "hidden" drivers may not be genetically or epigenetically altered or differentially expressed at the mRNA or protein levels, but, rather, drive a phenotype such as tumorigenesis via post-translational modification or other mechanisms. However, conventional approaches based on genomics or differential expression are limited in exposing such hidden drivers. Here, we present a comprehensive algorithm and toolkit NetBID2 (data-driven network-based Bayesian inference of drivers, version 2), which reverse-engineers context-specific interactomes and integrates network activity inferred from large-scale multi-omics data, empowering the identification of hidden drivers that could not be detected by traditional analyses. NetBID2 has substantially re-engineered the previous prototype version by providing versatile data visualization and sophisticated statistical analyses, which strongly facilitate researchers for result interpretation through end-to-end multi-omics data analysis. We demonstrate the power of NetBID2 using three hidden driver examples. We deploy NetBID2 Viewer, Runner, and Cloud apps with 145 context-specific gene regulatory and signaling networks across normal tissues and paediatric and adult cancers to facilitate end-to-end analysis, real-time interactive visualization and cloud-based data sharing. NetBID2 is freely available at https://jyyulab.github.io/NetBID .


Subject(s)
Algorithms , Genomics , Humans , Bayes Theorem , Cell Transformation, Neoplastic/genetics , Research Design , Software
5.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747870

ABSTRACT

The sparse nature of single-cell omics data makes it challenging to dissect the wiring and rewiring of the transcriptional and signaling drivers that regulate cellular states. Many of the drivers, referred to as "hidden drivers", are difficult to identify via conventional expression analysis due to low expression and inconsistency between RNA and protein activity caused by post-translational and other modifications. To address this issue, we developed scMINER, a mutual information (MI)-based computational framework for unsupervised clustering analysis and cell-type specific inference of intracellular networks, hidden drivers and network rewiring from single-cell RNA-seq data. We designed scMINER to capture nonlinear cell-cell and gene-gene relationships and infer driver activities. Systematic benchmarking showed that scMINER outperforms popular single-cell clustering algorithms, especially in distinguishing similar cell types. With respect to network inference, scMINER does not rely on the binding motifs which are available for a limited set of transcription factors, therefore scMINER can provide quantitative activity assessment for more than 6,000 transcription and signaling drivers from a scRNA-seq experiment. As demonstrations, we used scMINER to expose hidden transcription and signaling drivers and dissect their regulon rewiring in immune cell heterogeneity, lineage differentiation, and tissue specification. Overall, activity-based scMINER is a widely applicable, highly accurate, reproducible and scalable method for inferring cellular transcriptional and signaling networks in each cell state from scRNA-seq data. The scMINER software is publicly accessible via: https://github.com/jyyulab/scMINER.

6.
Res Sq ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747874

ABSTRACT

The sparse nature of single-cell omics data makes it challenging to dissect the wiring and rewiring of the transcriptional and signaling drivers that regulate cellular states. Many of the drivers, referred to as "hidden drivers", are difficult to identify via conventional expression analysis due to low expression and inconsistency between RNA and protein activity caused by post-translational and other modifications. To address this issue, we developed scMINER, a mutual information (MI)-based computational framework for unsupervised clustering analysis and cell-type specific inference of intracellular networks, hidden drivers and network rewiring from single-cell RNA-seq data. We designed scMINER to capture nonlinear cell-cell and gene-gene relationships and infer driver activities. Systematic benchmarking showed that scMINER outperforms popular single-cell clustering algorithms, especially in distinguishing similar cell types. With respect to network inference, scMINER does not rely on the binding motifs which are available for a limited set of transcription factors, therefore scMINER can provide quantitative activity assessment for more than 6,000 transcription and signaling drivers from a scRNA-seq experiment. As demonstrations, we used scMINER to expose hidden transcription and signaling drivers and dissect their regulon rewiring in immune cell heterogeneity, lineage differentiation, and tissue specification. Overall, activity-based scMINER is a widely applicable, highly accurate, reproducible and scalable method for inferring cellular transcriptional and signaling networks in each cell state from scRNA-seq data. The scMINER software is publicly accessible via: https://github.com/jyyulab/scMINER.

7.
Nat Cell Biol ; 24(11): 1642-1654, 2022 11.
Article in English | MEDLINE | ID: mdl-36302969

ABSTRACT

Phosphatase and tensin homologue (PTEN) is frequently mutated in human cancer, but its roles in lymphopoiesis and tissue homeostasis remain poorly defined. Here we show that PTEN orchestrates a two-step developmental process linking antigen receptor and IL-23-Stat3 signalling to type-17 innate-like T cell generation. Loss of PTEN leads to pronounced accumulation of mature IL-17-producing innate-like T cells in the thymus. IL-23 is essential for their accumulation, and ablation of IL-23 or IL-17 signalling rectifies the reduced survival of female PTEN-haploinsufficient mice that model human patients with PTEN mutations. Single-cell transcriptome and network analyses revealed the dynamic regulation of PTEN, mTOR and metabolic activities that accompanied type-17 cell programming. Furthermore, deletion of mTORC1 or mTORC2 blocks PTEN loss-driven type-17 cell accumulation, and this is further shaped by the Foxo1 and Stat3 pathways. Collectively, our study establishes developmental and metabolic signalling networks underpinning type-17 cell fate decisions and their functional effects at coordinating PTEN-dependent tissue homeostasis.


Subject(s)
Interleukin-17 , T-Lymphocytes , Humans , Female , Mice , Animals , T-Lymphocytes/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Signal Transduction , Homeostasis , Interleukin-23
8.
Nature ; 607(7917): 135-141, 2022 07.
Article in English | MEDLINE | ID: mdl-35732731

ABSTRACT

The identification of mechanisms to promote memory T (Tmem) cells has important implications for vaccination and anti-cancer immunotherapy1-4. Using a CRISPR-based screen for negative regulators of Tmem cell generation in vivo5, here we identify multiple components of the mammalian canonical BRG1/BRM-associated factor (cBAF)6,7. Several components of the cBAF complex are essential for the differentiation of activated CD8+ T cells into T effector (Teff) cells, and their loss promotes Tmem cell formation in vivo. During the first division of activated CD8+ T cells, cBAF and MYC8 frequently co-assort asymmetrically to the two daughter cells. Daughter cells with high MYC and high cBAF display a cell fate trajectory towards Teff cells, whereas those with low MYC and low cBAF preferentially differentiate towards Tmem cells. The cBAF complex and MYC physically interact to establish the chromatin landscape in activated CD8+ T cells. Treatment of naive CD8+ T cells with a putative cBAF inhibitor during the first 48 h of activation, before the generation of chimeric antigen receptor T (CAR-T) cells, markedly improves efficacy in a mouse solid tumour model. Our results establish cBAF as a negative determinant of Tmem cell fate and suggest that manipulation of cBAF early in T cell differentiation can improve cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Differentiation , DNA Helicases , Multiprotein Complexes , Nuclear Proteins , Proto-Oncogene Proteins c-myc , Transcription Factors , Animals , CD8-Positive T-Lymphocytes/cytology , DNA Helicases/metabolism , Disease Models, Animal , Immunologic Memory , Immunotherapy , Memory T Cells/cytology , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Neoplasms , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Chimeric Antigen , Transcription Factors/metabolism
9.
Nat Commun ; 13(1): 2801, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589701

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Glutamine/metabolism , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptor, Notch1/metabolism , T-Lymphocytes/metabolism
10.
Nature ; 600(7888): 308-313, 2021 12.
Article in English | MEDLINE | ID: mdl-34795452

ABSTRACT

Nutrients are emerging regulators of adaptive immunity1. Selective nutrients interplay with immunological signals to activate mechanistic target of rapamycin complex 1 (mTORC1), a key driver of cell metabolism2-4, but how these environmental signals are integrated for immune regulation remains unclear. Here we use genome-wide CRISPR screening combined with protein-protein interaction networks to identify regulatory modules that mediate immune receptor- and nutrient-dependent signalling to mTORC1 in mouse regulatory T (Treg) cells. SEC31A is identified to promote mTORC1 activation by interacting with the GATOR2 component SEC13 to protect it from SKP1-dependent proteasomal degradation. Accordingly, loss of SEC31A impairs T cell priming and Treg suppressive function in mice. In addition, the SWI/SNF complex restricts expression of the amino acid sensor CASTOR1, thereby enhancing mTORC1 activation. Moreover, we reveal that the CCDC101-associated SAGA complex is a potent inhibitor of mTORC1, which limits the expression of glucose and amino acid transporters and maintains T cell quiescence in vivo. Specific deletion of Ccdc101 in mouse Treg cells results in uncontrolled inflammation but improved antitumour immunity. Collectively, our results establish epigenetic and post-translational mechanisms that underpin how nutrient transporters, sensors and transducers interplay with immune signals for three-tiered regulation of mTORC1 activity and identify their pivotal roles in licensing T cell immunity and immune tolerance.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Nutrients , Protein Interaction Maps , T-Lymphocytes, Regulatory , Animals , Female , Male , Mice , Carrier Proteins/metabolism , CRISPR-Cas Systems/genetics , Forkhead Transcription Factors/metabolism , Genome/genetics , Homeostasis , Immune Tolerance , Inflammation/pathology , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/immunology , Nuclear Proteins/metabolism , Nutrients/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , S-Phase Kinase-Associated Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Trans-Activators/metabolism
11.
Nature ; 595(7869): 724-729, 2021 07.
Article in English | MEDLINE | ID: mdl-34234346

ABSTRACT

T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.


Subject(s)
Immunity, Humoral , Phosphatidylethanolamines/metabolism , Receptors, CXCR5/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/immunology , CRISPR-Cas Systems , Cell Differentiation , Cytidine Diphosphate , Female , Gene Expression Regulation , Humans , Leukocytes, Mononuclear/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphotransferases (Alcohol Group Acceptor) , RNA Nucleotidyltransferases , Signal Transduction
12.
Blood ; 138(2): 122-135, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33690816

ABSTRACT

Chimeric antigen receptor (CAR)-T-cell therapeutic efficacy is associated with long-term T-cell persistence and acquisition of memory. Memory-subset formation requires T-cell factor 1 (TCF-1), a master transcription factor for which few regulators have been identified. Here, we demonstrate using an immune-competent mouse model of B-cell acute lymphoblastic leukemia (ALL; B-ALL) that Regnase-1 deficiency promotes TCF-1 expression to enhance CAR-T-cell expansion and memory-like cell formation. This leads to improved CAR-T-mediated tumor clearance, sustained remissions, and protection against secondary tumor challenge. Phenotypic, transcriptional, and epigenetic profiling identified increased tumor-dependent programming of Regnase-1-deficient CAR-T cells into TCF-1+ precursor exhausted T cells (TPEX) characterized by upregulation of both memory and exhaustion markers. Regnase-1 directly targets Tcf7 messenger RNA (mRNA); its deficiency augments TCF-1 expression leading to the formation of TPEX that support long-term CAR-T-cell persistence and function. Regnase-1 deficiency also reduces exhaustion and enhances the activity of TCF-1- CAR-T cells. We further validate these findings in human CAR-T cells, where Regnase-1 deficiency mediates enhanced tumor clearance in a xenograft B-ALL model. This is associated with increased persistence and expansion of a TCF-1+ CAR-T-cell population. Our findings demonstrate the pivotal roles of TPEX, Regnase-1, and TCF-1 in mediating CAR-T-cell persistence and recall responses, and identify Regnase-1 as a modulator of human CAR-T-cell longevity and potency that may be manipulated for improved therapeutic efficacy.


Subject(s)
Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Ribonucleases/metabolism , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/immunology , Animals , Antigens, CD19/metabolism , Cell Line, Tumor , Cellular Reprogramming , Disease Models, Animal , Epigenesis, Genetic , Humans , Immunocompetence/immunology , Immunologic Memory , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
13.
Cell ; 184(5): 1245-1261.e21, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636132

ABSTRACT

How early events in effector T cell (TEFF) subsets tune memory T cell (TMEM) responses remains incompletely understood. Here, we systematically investigated metabolic factors in fate determination of TEFF and TMEM cells using in vivo pooled CRISPR screening, focusing on negative regulators of TMEM responses. We found that amino acid transporters Slc7a1 and Slc38a2 dampened the magnitude of TMEM differentiation, in part through modulating mTORC1 signaling. By integrating genetic and systems approaches, we identified cellular and metabolic heterogeneity among TEFF cells, with terminal effector differentiation associated with establishment of metabolic quiescence and exit from the cell cycle. Importantly, Pofut1 (protein-O-fucosyltransferase-1) linked GDP-fucose availability to downstream Notch-Rbpj signaling, and perturbation of this nutrient signaling axis blocked terminal effector differentiation but drove context-dependent TEFF proliferation and TMEM development. Our study establishes that nutrient uptake and signaling are key determinants of T cell fate and shape the quantity and quality of TMEM responses.


Subject(s)
Amino Acids/metabolism , CD8-Positive T-Lymphocytes/cytology , Immunologic Memory , Signal Transduction , Amino Acid Transport Systems/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems , Cell Cycle , Cell Differentiation , Disease Models, Animal , Female , Gene Knock-In Techniques , Lymphocytic Choriomeningitis/immunology , Male , Mice , Mice, Transgenic , Precursor Cells, T-Lymphoid/cytology
14.
Nature ; 591(7849): 306-311, 2021 03.
Article in English | MEDLINE | ID: mdl-33627871

ABSTRACT

Regulatory T cells (Treg cells) are essential for immune tolerance1, but also drive immunosuppression in the tumour microenvironment2. Therapeutic targeting of Treg cells in cancer will therefore require the identification of context-specific mechanisms that affect their function. Here we show that inhibiting lipid synthesis and metabolic signalling that are dependent on sterol-regulatory-element-binding proteins (SREBPs) in Treg cells unleashes effective antitumour immune responses without autoimmune toxicity. We find that the activity of SREBPs is upregulated in intratumoral Treg cells. Moreover, deletion of SREBP-cleavage-activating protein (SCAP)-a factor required for SREBP activity-in these cells inhibits tumour growth and boosts immunotherapy that is triggered by targeting the immune-checkpoint protein PD-1. These effects of SCAP deletion are associated with uncontrolled production of interferon-γ and impaired function of intratumoral Treg cells. Mechanistically, signalling through SCAP and SREBPs coordinates cellular programs for lipid synthesis and inhibitory receptor signalling in these cells. First, de novo fatty-acid synthesis mediated by fatty-acid synthase (FASN) contributes to functional maturation of Treg cells, and loss of FASN from Treg cells inhibits tumour growth. Second, Treg cells in tumours show enhanced expression of the PD-1 gene, through a process that depends on SREBP activity and signals via mevalonate metabolism to protein geranylgeranylation. Blocking PD-1 or SREBP signalling results in dysregulated activation of phosphatidylinositol-3-kinase in intratumoral Treg cells. Our findings show that metabolic reprogramming enforces the functional specialization of Treg cells in tumours, pointing to new ways of targeting these cells for cancer therapy.


Subject(s)
Lipid Metabolism , Neoplasms/immunology , Neoplasms/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Animals , Cholesterol/metabolism , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Female , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/metabolism , Mevalonic Acid/metabolism , Mice , Phosphatidylinositol 3-Kinase/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Sterol Regulatory Element Binding Proteins/antagonists & inhibitors , Sterol Regulatory Element Binding Proteins/metabolism , T-Lymphocytes, Regulatory/enzymology , Up-Regulation
15.
Cell Metab ; 32(6): 996-1011.e7, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33207246

ABSTRACT

Effector regulatory T (eTreg) cells are essential for immune tolerance and depend upon T cell receptor (TCR) signals for generation. The immunometabolic signaling mechanisms that promote the differentiation and maintenance of eTreg cells remain unclear. Here, we show that isoprenoid-dependent posttranslational lipid modifications dictate eTreg cell accumulation and function by intersecting with TCR-induced intracellular signaling. We find that isoprenoids are essential for activated Treg cell suppressive activity, and Treg cell-specific deletion of the respective farnesylation- and geranylgeranylation-promoting enzymes Fntb or Pggt1b leads to the development of fatal autoimmunity, associated with reduced eTreg cell accumulation. Mechanistically, Fntb promotes eTreg cell maintenance by regulating mTORC1 activity and ICOS expression. In contrast, Pggt1b acts as a rheostat of TCR-dependent transcriptional programming and Rac-mediated signaling for establishment of eTreg cell differentiation and immune tolerance. Therefore, our results identify bidirectional metabolic signaling, specifically between immunoreceptor signaling and metabolism-mediated posttranslational lipid modifications, for the differentiation and maintenance of eTreg cells.


Subject(s)
Cell Differentiation/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory , Terpenes , Animals , Female , Immune Tolerance , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Prenylation , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Terpenes/immunology , Terpenes/metabolism
16.
Nat Immunol ; 21(6): 660-670, 2020 06.
Article in English | MEDLINE | ID: mdl-32341509

ABSTRACT

Within germinal centers (GCs), complex and highly orchestrated molecular programs must balance proliferation, somatic hypermutation and selection to both provide effective humoral immunity and to protect against genomic instability and neoplastic transformation. In contrast to this complexity, GC B cells are canonically divided into two principal populations, dark zone (DZ) and light zone (LZ) cells. We now demonstrate that, following selection in the LZ, B cells migrated to specialized sites within the canonical DZ that contained tingible body macrophages and were sites of ongoing cell division. Proliferating DZ (DZp) cells then transited into the larger DZ to become differentiating DZ (DZd) cells before re-entering the LZ. Multidimensional analysis revealed distinct molecular programs in each population commensurate with observed compartmentalization of noncompatible functions. These data provide a new three-cell population model that both orders critical GC functions and reveals essential molecular programs of humoral adaptive immunity.


Subject(s)
Cellular Microenvironment/genetics , Cellular Microenvironment/immunology , Germinal Center/cytology , Germinal Center/physiology , Animals , Biomarkers , Computational Biology/methods , Fluorescent Antibody Technique , Gene Expression Profiling , Genomics/methods , Mice , Phosphorylation , Proteome , Proteomics/methods , Transcriptome
17.
J Exp Med ; 217(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32289155

ABSTRACT

Invariant natural killer T (iNKT) cells acquire effector functions during development by mechanisms that remain poorly understood. Here, we show that the Hippo kinases Mst1 and Mst2 act as molecular rheostats for the terminal maturation and effector differentiation programs of iNKT cells. Loss of Mst1 alone or together with Mst2 impedes iNKT cell development, associated with defective IL-15-dependent cell survival. Mechanistically, Mst1 enforces iNKT cellular and transcriptional quiescence associated with maturation and commitment to iNKT1 cells by suppressing proliferation and Opa1-related mitochondrial metabolism that are dynamically regulated during iNKT cell development. Furthermore, Mst1 shapes the reciprocal fate decisions between iNKT1 and iNKT17 effector cells, which respectively depend upon mitochondrial dynamics and ICOS-mTORC2 signaling. Collectively, these findings establish Mst1 as a crucial regulator of mitochondrial homeostasis and quiescence in iNKT cell development and effector lineage differentiation and highlight that establishment of quiescence programs underlies iNKT cell development and effector maturation.


Subject(s)
Cell Cycle , Cell Lineage , Hepatocyte Growth Factor/metabolism , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction , Animals , Cell Differentiation , Cell Survival , Gene Expression Regulation , Hippo Signaling Pathway , Homeostasis , Interleukin-15/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Serine-Threonine Kinase 3 , Transcription, Genetic
18.
Sci Adv ; 6(1): eaaw6443, 2020 01.
Article in English | MEDLINE | ID: mdl-31911938

ABSTRACT

Regulatory T cell (Treg) activation and expansion occur during neonatal life and inflammation to establish immunosuppression, yet the mechanisms governing these events are incompletely understood. We report that the transcriptional regulator c-Myc (Myc) controls immune homeostasis through regulation of Treg accumulation and functional activation. Myc activity is enriched in Tregs generated during neonatal life and responding to inflammation. Myc-deficient Tregs show defects in accumulation and ability to transition to an activated state. Consequently, loss of Myc in Tregs results in an early-onset autoimmune disorder accompanied by uncontrolled effector CD4+ and CD8+ T cell responses. Mechanistically, Myc regulates mitochondrial oxidative metabolism but is dispensable for fatty acid oxidation (FAO). Indeed, Treg-specific deletion of Cox10, which promotes oxidative phosphorylation, but not Cpt1a, the rate-limiting enzyme for FAO, results in impaired Treg function and maturation. Thus, Myc coordinates Treg accumulation, transitional activation, and metabolic programming to orchestrate immune homeostasis.


Subject(s)
Fatty Acids/metabolism , Immunosuppression Therapy , Inflammation/immunology , Proto-Oncogene Proteins c-myc/genetics , T-Lymphocytes, Regulatory/immunology , Alkyl and Aryl Transferases/immunology , Animals , Animals, Newborn/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Flow Cytometry , Homeostasis/immunology , Inflammation/genetics , Membrane Proteins/immunology , Mice , Oxidation-Reduction , Oxidative Phosphorylation , Proto-Oncogene Proteins c-myc/immunology , T-Lymphocytes, Regulatory/metabolism
19.
J Exp Med ; 217(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-31722972

ABSTRACT

Thymocyte egress is a critical determinant of T cell homeostasis and adaptive immunity. Despite the roles of G protein-coupled receptors in thymocyte emigration, the downstream signaling mechanism remains poorly defined. Here, we report the discrete roles for the two branches of mevalonate metabolism-fueled protein prenylation pathway in thymocyte egress and immune homeostasis. The protein geranylgeranyltransferase Pggt1b is up-regulated in single-positive thymocytes, and loss of Pggt1b leads to marked defects in thymocyte egress and T cell lymphopenia in peripheral lymphoid organs in vivo. Mechanistically, Pggt1b bridges sphingosine-1-phosphate and chemokine-induced migratory signals with the activation of Cdc42 and Pak signaling and mevalonate-dependent thymocyte trafficking. In contrast, the farnesyltransferase Fntb, which mediates a biochemically similar process of protein farnesylation, is dispensable for thymocyte egress but contributes to peripheral T cell homeostasis. Collectively, our studies establish context-dependent effects of protein prenylation and unique roles of geranylgeranylation in thymic egress and highlight that the interplay between cellular metabolism and posttranslational modification underlies immune homeostasis.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Mevalonic Acid/metabolism , Protein Prenylation/genetics , Thymocytes/metabolism , Alkyl and Aryl Transferases/genetics , Animals , Cell Movement/genetics , Cells, Cultured , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Homeostasis/genetics , Homeostasis/immunology , Lymphopenia/genetics , Lysophospholipids/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Sphingosine/analogs & derivatives , Sphingosine/metabolism , T-Lymphocytes/metabolism , Thymus Gland/immunology , cdc42 GTP-Binding Protein/metabolism , p21-Activated Kinases/metabolism
20.
Nature ; 576(7787): 471-476, 2019 12.
Article in English | MEDLINE | ID: mdl-31827283

ABSTRACT

Adoptive cell therapy represents a new paradigm in cancer immunotherapy, but it can be limited by the poor persistence and function of transferred T cells1. Here we use an in vivo pooled CRISPR-Cas9 mutagenesis screening approach to demonstrate that, by targeting REGNASE-1, CD8+ T cells are reprogrammed to long-lived effector cells with extensive accumulation, better persistence and robust effector function in tumours. REGNASE-1-deficient CD8+ T cells show markedly improved therapeutic efficacy against mouse models of melanoma and leukaemia. By using a secondary genome-scale CRISPR-Cas9 screening, we identify BATF as the key target of REGNASE-1 and as a rheostat that shapes antitumour responses. Loss of BATF suppresses the increased accumulation and mitochondrial fitness of REGNASE-1-deficient CD8+ T cells. By contrast, the targeting of additional signalling factors-including PTPN2 and SOCS1-improves the therapeutic efficacy of REGNASE-1-deficient CD8+ T cells. Our findings suggest that T cell persistence and effector function can be coordinated in tumour immunity and point to avenues for improving the efficacy of adoptive cell therapy for cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Leukemia/immunology , Leukemia/therapy , Melanoma/immunology , Melanoma/therapy , Molecular Targeted Therapy , Ribonucleases/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/cytology , CRISPR-Cas Systems/genetics , Disease Models, Animal , Female , Gene Deletion , Humans , Leukemia/genetics , Leukemia/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/genetics , Melanoma/metabolism , Mice , Mitochondria/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Reproducibility of Results , Ribonucleases/deficiency , Ribonucleases/genetics , Ribonucleases/immunology , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL