Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
J Am Chem Soc ; 146(38): 26102-26112, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39255453

ABSTRACT

Cells contain intricate protein nanostructures, but replicating them outside of cells presents challenges. One such example is the vertical fibronectin pillars observed in embryos. Here, we demonstrate the creation of cell-free vertical fibronectin pillar mimics using nonequilibrium self-assembly. Our approach utilizes enzyme-responsive phosphopeptides that assemble into nanotubes. Enzyme action triggers shape changes in peptide assemblies, driving the vertical growth of protein nanopillars into bundles. These bundles, with peptide nanotubes serving as a template to remodel fibronectin, can then recruit collagen, which forms aggregates or bundles depending on their types. Nanopillar formation relies on enzyme-catalyzed nonequilibrium self-assembly and is governed by the concentrations of enzyme, protein, peptide, the structure of the peptide, and peptide assembly morphologies. Cryo-EM reveals unexpected nanotube thinning and packing after dephosphorylation, indicating a complex sculpting process during assembly. Our study demonstrates a cell-free method for constructing intricate, multiprotein nanostructures with directionality and composition.


Subject(s)
Peptides , Peptides/chemistry , Peptides/metabolism , Fibronectins/chemistry , Fibronectins/metabolism , Nanostructures/chemistry , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Nanotubes/chemistry
3.
Biophys J ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306670

ABSTRACT

α-Synuclein (α-syn) is an abundant presynaptic neuronal protein whose aggregation is strongly associated with Parkinson's disease. It has been proposed that lipid membranes significantly affect α-syn's aggregation process. Extensive studies have been conducted to understand the interactions between α-syn and lipid membranes and have demonstrated that the N-terminus plays a critical role. However, the dynamics of the interactions and the conformational transitions of the N-terminus of α-syn at the atomistic scale details are still highly desired. In this study, we performed extensive enhanced sampling molecular dynamics simulations to quantify the folding and interactions of wild-type and N-terminally acetylated α-syn when interacting with lipid structures. We found that N-terminal acetylation significantly increases the helicity of the first few residues in solution or when interacting with lipid membranes. The observations in simulations showed that the binding of α-syn with lipid membranes mainly follows the induced-fit model, where the disordered α-syn binds with the lipid membrane through the electrostatic interactions and hydrophobic contacts with the packing defects; after stable insertion, N-terminal acetylation promotes the helical folding of the N-terminus to enhance the anchoring, thus increasing the binding affinity. We have shown the critical role of the first N-terminal residue methionine for recognition and anchoring to the negatively charged membrane. Although N-terminal acetylation neutralizes the positive charge of Met1 that may affect the electrostatic interactions of α-syn with membranes, the increase in helicity of the N-terminus should compensate for the binding affinity. This study provides detailed insight into the folding dynamics of α-syn's N-terminus with or without acetylation in solution and upon interaction with lipids, which clarifies how the N-terminal acetylation regulates the affinity of α-syn binding to lipid membranes. It also shows how packing defects and electrostatic effects coregulate the N-terminus of α-syn folding and its interaction with membranes.

4.
Micromachines (Basel) ; 15(9)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39337772

ABSTRACT

Access to clean water is fundamental to public health and safety, serving as the cornerstone of well-being in communities. Despite the significant investments of millions of dollars in water testing and treatment processes, the United States continues to grapple with over 7 million waterborne-related cases annually. This persistent challenge underscores the pressing need for the development of a new, efficient, rapid, low-cost, and reliable method for ensuring water quality. The urgency of this endeavor cannot be overstated, as it holds the potential to safeguard countless lives and mitigate the pervasive risks associated with contaminated water sources. In this study, we introduce a biochip LAMP assay tailored for water source monitoring. Our method swiftly detects even extremely low concentrations of Escherichia coli (E. coli) in water, and 10 copies/µL of E. coli aqueous solution could yield positive results within 15 min on a PC-MEDA biochip. This innovation marks a significant departure from the current reliance on lab-dependent methods, which typically necessitate several days for bacterial culture and colony counting. Our multifunctional biochip system not only enables the real-time LAMP testing of crude E. coli samples but also holds promise for future modifications to facilitate on-site usage, thereby revolutionizing water quality assessment and ensuring rapid responses to potential contamination events.

5.
Natl Sci Rev ; 11(6): nwae182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962715

ABSTRACT

Accumulation of aggregated α-synuclein (α-syn) in Lewy bodies is the pathological hallmark of Parkinson's disease (PD). Genetic mutations in lipid metabolism are causative for a subset of patients with Parkinsonism. The role of α-syn's lipid interactions in its function and aggregation is recognized, yet the specific lipids involved and how lipid metabolism issues trigger α-syn aggregation and neurodegeneration remain unclear. Here, we found that α-syn shows a preference for binding to lysophospholipids (LPLs), particularly targeting lysophosphatidylcholine (LPC) without relying on electrostatic interactions. LPC is capable of maintaining α-syn in a compact conformation, significantly reducing its propensity to aggregate both in vitro and within cellular environments. Conversely, a reduction in the production of cellular LPLs is associated with an increase in α-syn accumulation. Our work underscores the critical role of LPLs in preserving the natural conformation of α-syn to inhibit improper aggregation, and establishes a potential connection between lipid metabolic dysfunction and α-syn aggregation in PD.

6.
Nat Cell Biol ; 26(8): 1287-1295, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38951706

ABSTRACT

α-Synuclein (α-Syn) aggregation is closely associated with Parkinson's disease neuropathology. Physiologically, α-Syn promotes synaptic vesicle (SV) clustering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly. However, the underlying structural and molecular mechanisms are uncertain and it is not known whether this function affects the pathological aggregation of α-Syn. Here we show that the juxtamembrane region of vesicle-associated membrane protein 2 (VAMP2)-a component of the SNARE complex that resides on SVs-directly interacts with the carboxy-terminal region of α-Syn through charged residues to regulate α-Syn's function in clustering SVs and promoting SNARE complex assembly by inducing a multi-component condensed phase of SVs, α-Syn and other components. Moreover, VAMP2 binding protects α-Syn against forming aggregation-prone oligomers and fibrils in these condensates. Our results suggest a molecular mechanism that maintains α-Syn's function and prevents its pathological amyloid aggregation, the failure of which may lead to Parkinson's disease.


Subject(s)
Synaptic Vesicles , Vesicle-Associated Membrane Protein 2 , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Vesicle-Associated Membrane Protein 2/metabolism , Vesicle-Associated Membrane Protein 2/genetics , Synaptic Vesicles/metabolism , Animals , Humans , Protein Binding , SNARE Proteins/metabolism , SNARE Proteins/genetics , Mice , Rats , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Neurons/metabolism , Neurons/pathology , Molecular Chaperones/metabolism , Molecular Chaperones/genetics
7.
Elife ; 132024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831693

ABSTRACT

A change in the electric charge of autophagosome membranes controls the recruitment of SNARE proteins to ensure that membrane fusion occurs at the right time during autophagy.


Subject(s)
Autophagosomes , Autophagy , Membrane Fusion , SNARE Proteins , Autophagy/physiology , Autophagosomes/metabolism , SNARE Proteins/metabolism , Humans , Animals
8.
bioRxiv ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38496494

ABSTRACT

Post-translational modifications (PTMs) of α-synuclein (α-syn) such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Previously, we reported that α-syn clusters synaptic vesicles (SV)1, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering2. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological conditions and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn's N-terminus and increased intermolecular interactions on the LPC-containing membrane. Our work demonstrates that N-acetylation fine-tunes α-syn-LPC interaction for mediating α-syn's function in SV clustering.

9.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302992

ABSTRACT

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neoplastic Stem Cells , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Self Renewal/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , Neoplastic Stem Cells/pathology , Protein Biosynthesis , Ribosomes/metabolism , RNA
10.
Autophagy Rep ; 3(1)2024.
Article in English | MEDLINE | ID: mdl-38344192

ABSTRACT

Macroautophagy (also known as autophagy) plays a pivotal role in maintaining cellular homeostasis. The terminal step of the multi-step autophagy degradation pathway involves fusion between the cargo-laden, double-membraned autophagosome and the lytic organelle lysosome/vacuole. Over the past decade, various core components of the molecular machinery that execute this critical terminal autophagy event have been identified. This review highlights recent advances in understanding the molecular structures, biochemical functions, and regulatory mechanisms of key components of this highly sophisticated machinery including the SNARE fusogens, tethering factors, Rab GTPases and associated guanine nucleotide exchange factors, and other accessory factors.

11.
Cell Rep ; 43(2): 113741, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38335092

ABSTRACT

Jiajie (JJ) Diao spoke with us at Cell Reports about his outlook on science, the value of collaboration, and his exciting work asking cell biology questions using biophysical approaches. Specifically, he discusses the recent study from his team where they discover that mitochondrial nucleoid condensates can remodel the mitochondrial membrane through high membrane curvature.


Subject(s)
Mitochondria , Mitochondrial Membranes , Male , Humans , Biophysics
12.
Trends Analyt Chem ; 1692023 Dec.
Article in English | MEDLINE | ID: mdl-37928815

ABSTRACT

Structured illumination microscopy (SIM) is a super-resolution technology for imaging living cells and has been used for studying the dynamics of lysosomes and mitochondria. Recently, new probes and analyzing methods have been developed for SIM imaging, enabling the quantitative analysis of these subcellular structures and their interactions. This review provides an overview of the working principle and advances of SIM, as well as the organelle-targeting principles and types of fluorescence probes, including small molecules, metal complexes, nanoparticles, and fluorescent proteins. Additionally, quantitative methods based on organelle morphology and distribution are outlined. Finally, the review provides an outlook on the current challenges and future directions for improving the combination of SIM imaging and image analysis to further advance the study of organelles. We hope that this review will be useful for researchers working in the field of organelle research and help to facilitate the development of SIM imaging and analysis techniques.

13.
Cell Rep ; 42(12): 113472, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37999975

ABSTRACT

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.


Subject(s)
DNA, Mitochondrial , Mitochondria , Mitochondria/genetics , DNA, Mitochondrial/genetics , Mitochondrial Membranes , Mitochondrial Dynamics/genetics , Mitochondrial Proteins
14.
Proc Natl Acad Sci U S A ; 120(44): e2310174120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37883437

ABSTRACT

α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Synaptic Vesicles/metabolism , Lysophosphatidylcholines/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phospholipids/metabolism
15.
Eur Phys J E Soft Matter ; 46(10): 96, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37823961

ABSTRACT

α-Synuclein (α-Syn) is an intrinsically disordered protein whose aggregation is associated with Parkinson's disease, dementia, and other neurodegenerative diseases known as synucleinopathies. However, the functional role of α-Syn is still unclear, although it has been shown to be involved in the regulation of neurotransmitter release via the interaction with synaptic vesicles (SVs), vesicle clustering, and SNARE complex assembly. Fatty acids have significant occupancy in synaptic vesicles; and recent studies suggest the interaction of fatty acids with α-Syn affect the formation of (pathological) aggregates, but it is less clear how fatty acids affects the functional role of α-Syn including α-Syn-membrane interactions, in particular with (SV-like) vesicles. Here, we report the concentration dependent effect of docosahexaenoic acid (DHA) in synaptic-like vesicle clustering via α-Syn interaction. Through molecular dynamics simulation, we revealed that DHA promoted vesicle clustering is due to the electrostatic interaction between DHA in the membrane and the N-terminal region of α-Syn. Moreover, this increased electrostatic interaction arises from a change in the macroscopic properties of the protein-membrane interface induced by (preferential solvation of) DHA. Our results provide insight as to how DHA regulates vesicle clustering mediated by α-Syn and may further be useful to understand its physiological as well as pathological role. Description: In physiological environments, α-Synuclein (α-Syn) localizes at nerve termini and synaptic vesicles and interacts with anionic phospholipid membranes to promote vesicle clustering. Docosahexaenoic acid (DHA) increases binding affinity between α-Syn and lipid membranes by increasing electrostatic interaction energy through modulating the local and global membrane environment and conformational properties of α-Syn.


Subject(s)
Docosahexaenoic Acids , alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Docosahexaenoic Acids/metabolism , Static Electricity , Phospholipids/chemistry , Synaptic Vesicles/metabolism
16.
Chem Sci ; 14(37): 10236-10248, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37772119

ABSTRACT

Detecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy. Given its sensitivity to mitochondrial membrane potential and affinity to DNA, PCV-1's ability to stain mitochondria and nucleoli was observed in live and dead cells, respectively. During cell injury induced by drug treatment, PCV-1's migration from mitochondria to the nucleolus was dynamically visualized at the single-cell level. By extension, harnessing PCV-1's excellent photostability and signal-to-noise ratio and by comparing the fluorescence intensity of the two organelles, mitochondria and nucleoli, we developed a powerful analytical assay named organelle ratiometric probing (ORP) that we applied to quantitatively analyze and efficiently assess the viability of individual cells, thereby enabling deeper insights into the potential mechanisms of cell death. In ORP analysis with PCV-1, we identified 0.3 as the cutoff point for assessing whether adding a given drug will cause apparent cytotoxicity, which greatly expands the probe's applicability. To the best of our knowledge, PCV-1 is the first probe to allow visualizing cell death and cell injury under super-resolution imaging, and our proposed analytical assay using it paves the way for quantifying cell viability at the single-cell level.

17.
Biosens Bioelectron ; 239: 115604, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37607448

ABSTRACT

Two-photon absorbing fluorescent probes have emerged as powerful imaging tools for subcellular-level monitoring of biological substances and processes, offering advantages such as deep light penetration, minimal photodamage, low autofluorescence, and high spatial resolution. However, existing two-photon absorbing probes still face several limitations, such as small two-photon absorption cross-section, poor water solubility, low membrane permeability, and potentially high toxicity. Herein, we report three small-molecule probes, namely MSP-1arm, Lyso-2arm, and Mito-3arm, composed of a pyridinium center (electron-acceptor) and various methoxystyrene "arms" (electron-donor). These probes exhibit excellent fluorescence quantum yield and decent aqueous solubility. Leveraging the inherent intramolecular charge transfer and excitonic coupling effect, these complexes demonstrate excellent two-photon absorption in the near-infrared region. Notably, Lyso-2arm and Mito-3arm exhibit distinct targeting abilities for lysosomes and mitochondria, respectively. In two-photon microscopy experiments, Mito-3arm outperforms a commercial two-photon absorbing dye in 2D monolayer HeLa cells, delivering enhanced resolution, broader NIR light excitation window, and higher signal-to-noise ratio. Moreover, the two-photon bioimaging of 3D human forebrain organoids confirms the successful deep tissue imaging capabilities of both Lyso-2arm and Mito-3arm. Overall, this work presents a rational design strategy in developing competent two-photon-absorbing probes by varying the number of conjugated "arms" for bioimaging applications.


Subject(s)
Biosensing Techniques , Microscopy , Humans , Fluorescent Dyes , HeLa Cells , Cell Membrane Permeability , Mitomycin
18.
Bioengineering (Basel) ; 10(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37627808

ABSTRACT

Biochips, a novel technology in the field of biomolecular analysis, offer a promising alternative to conventional testing equipment. These chips integrate multiple functions within a single system, providing a compact and efficient solution for various testing needs. For biochips, a pattern-control micro-electrode-dot-array (MEDA) is a new, universally viable design that can replace microchannels and other micro-components. In a Micro Electrode Dot Array (MEDA), each electrode can be programmatically controlled or dynamically grouped, allowing a single chip to fulfill the diverse requirements of different tests. This capability not only enhances flexibility, but also contributes to cost reduction by eliminating the need for multiple specialized chips. In this paper, we present a visible biochip testing system for tracking the entire testing process in real time, and describe our application of the system to detect SARS-CoV-2.

19.
Adv Drug Deliv Rev ; 199: 114978, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37385544

ABSTRACT

Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.

20.
Nat Chem Biol ; 19(12): 1434-1435, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37322155
SELECTION OF CITATIONS
SEARCH DETAIL