Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Ann Oncol ; 35(2): 190-199, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37872020

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors in combination with tyrosine kinase inhibitors are standard treatments for advanced clear cell renal cell carcinoma (RCC). This phase III RENOTORCH study compared the efficacy and safety of toripalimab plus axitinib versus sunitinib for the first-line treatment of patients with intermediate-/poor-risk advanced RCC. PATIENTS AND METHODS: Patients with intermediate-/poor-risk unresectable or metastatic RCC were randomized in a ratio of 1 : 1 to receive toripalimab (240 mg intravenously once every 3 weeks) plus axitinib (5 mg orally twice daily) or sunitinib [50 mg orally once daily for 4 weeks (6-week cycle) or 2 weeks (3-week cycle)]. The primary endpoint was progression-free survival (PFS) assessed by an independent review committee (IRC). The secondary endpoints were investigator-assessed PFS, overall response rate (ORR), overall survival (OS), and safety. RESULTS: A total of 421 patients were randomized to receive toripalimab plus axitinib (n = 210) or sunitinib (n = 211). With a median follow-up of 14.6 months, toripalimab plus axitinib significantly reduced the risk of disease progression or death by 35% compared with sunitinib as assessed by an IRC [hazard ratio (HR) 0.65, 95% confidence interval (CI) 0.49-0.86; P = 0.0028]. The median PFS was 18.0 months in the toripalimab-axitinib group, whereas it was 9.8 months in the sunitinib group. The IRC-assessed ORR was significantly higher in the toripalimab-axitinib group compared with the sunitinib group (56.7% versus 30.8%; P < 0.0001). An OS trend favoring toripalimab plus axitinib was also observed (HR 0.61, 95% CI 0.40-0.92). Treatment-related grade ≥3 adverse events occurred in 61.5% of patients in the toripalimab-axitinib group and 58.6% of patients in the sunitinib group. CONCLUSION: In patients with previously untreated intermediate-/poor-risk advanced RCC, toripalimab plus axitinib provided significantly longer PFS and higher ORR than sunitinib and had a manageable safety profile TRIAL REGISTRATION: ClinicalTrials.gov NCT04394975.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Axitinib/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/drug therapy , Sunitinib/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects
2.
Eur Rev Med Pharmacol Sci ; 20(15): 3282-91, 2016 07.
Article in English | MEDLINE | ID: mdl-27467005

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the effects of grape seed procyanidin extract (GSPE) on cell proliferation and apoptosis in human bladder cancer BIU87 cells and to investigate its molecular mechanism in vitro. MATERIALS AND METHODS: BIU87 cells were treated with different concentrations of GSPE for 24h in vitro while an untreated group was taken as control. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, Hoechst 33258 staining, flow cytometry, RT-PCR and Western blot were used to detect the anti-proliferation and apoptotic induction effects of GSPE on BIU87 cells. RESULTS: It was found that GSPE inhibited the cell growth through cell cycle arrest at G1 phase and induced cell apoptosis in BIU87 cells in a dose-dependent manner. Semi-quantitated RT-PCR and Western blot analyses indicated that GSPE increased caspase-3 (p<0.01), but decreased the expression of cyclinD1, CDK4 and survivin (p<0.01). CONCLUSIONS: GSPE inhibits cell proliferation by inducing cell cycle arrest and apoptosis in BIU87 cells, and the effect may be related with its down-regulation of cyclinD1, CDK4 and survivin.


Subject(s)
Grape Seed Extract , Proanthocyanidins/pharmacology , Urinary Bladder Neoplasms/drug therapy , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL