Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Mycologia ; 116(4): 498-508, 2024.
Article in English | MEDLINE | ID: mdl-38848260

ABSTRACT

Fossil epifoliar fungi are valuable indicators of paleoenvironment and paleoecology. The Meliolaceae, members of which typically inhabit the surface of living plants as biotrophs or pathogens, is one of the largest groups of epifoliar fungi. In this study, we report a novel fossil species of Meliolinites Selkirk (fossil Meliolaceae), Meliolinites tengchongensis, on the lower epidermis of compressed fossil Rhodoleia (Hamamelidaceae) leaves from the Upper Pliocene Mangbang Formation of Tengchong, Yunnan, southwestern China. Meliolinites tengchongensis is characterized by web-like, superficial, brown to dark brown, septate, and branching mycelia bearing 2-celled appressoria and unicellular phialides. The fungal colonies also include ellipsoidal, 5-celled, 4-septate ascospores and dark brown perithecia with suborbicular outline and verrucose surface. The well-preserved vegetative and reproductive organs help us to explore the potential disease process of the new fossil species. Besides, the presence of fungal remains indicates that the fungal taxon might have maintained its host preference since at least the Late Pliocene. Furthermore, the occurrence of both fossil fungi and their host plants in Tengchong indicate a subtropical-tropical, warm, and humid climate during the Late Pliocene, whereas the distribution pattern of the fungi on the host leaves suggests that Rhodoleia may have been a part of the middle-upper canopies in the Tengchong Late Pliocene multilayered forest.


Subject(s)
Fossils , Plant Leaves , Plant Leaves/microbiology , China , Ascomycota/classification , Ascomycota/isolation & purification , Spores, Fungal
2.
Proc Natl Acad Sci U S A ; 121(24): e2400711121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833476

ABSTRACT

Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.


Subject(s)
Lipidomics , Nitrogen , Phosphorus , Sulfur , Phosphorus/metabolism , Sulfur/metabolism , Nitrogen/metabolism , Adaptation, Physiological , Sulfates/metabolism , Bacteria, Anaerobic/metabolism , Anaerobiosis
3.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38869598

ABSTRACT

Using KOH-modified wheat straw as the precursor, wheat straw biochar was produced through carbonization at 500 °C. Subsequently, a synthetic material containing nano-zero-valent iron (nZVI) was prepared via liquid phase reduction (nZVI-WSPC). To enhance its properties, chitosan (CTS) was used by crosslinking to form the new adsorbent named CTS@nZVI-WSPC. The impact of CTS on parameters such as mass ratio, initial pH value, and adsorbent dosage on the adsorption efficiency of Cr(VI) in solution was investigated through one-factor experiments. Isotherm adsorption and thermodynamic analysis demonstrated that the adsorption of Cr(VI) by CTS@nZVI-WSPC conforms to the Langmuir model, with a maximum adsorption capacity of 147.93 mg/g, and the adsorption process is endothermic. Kinetic analysis revealed that the adsorption process follows a pseudo-second-order kinetic model. The adsorption mechanism, as elucidated by SEM, FTIR, XPS, and XRD, suggests that the process may involve multiple mechanisms, including pore adsorption, electrostatic adsorption, chemical reduction, and surface chelation. The adsorption capacity of Cr(VI) by CTS@nZVI-WSPC remains high after five cycles. The adsorbent is simple to operate, economical, efficient, and reusable, making it a promising candidate for the treatment of Cr(VI) in water.

4.
World J Gastroenterol ; 30(10): 1346-1357, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38596503

ABSTRACT

BACKGROUND: Within the normal range, elevated alanine aminotransferase (ALT) levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD). AIM: To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively. METHODS: A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected. The incidence rate, cumulative times, and equally and unequally weighted cumulative effects of excess high-normal ALT levels (ehALT) were measured. Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD. RESULTS: A total of 83.13% of participants with MAFLD had normal ALT levels. The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group. Compared with those in the low-normal ALT group, the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651 [95% confidence interval (CI): 1.199-2.273] and 1.535 (95%CI: 1.119-2.106) in the third quartile and 1.616 (95%CI: 1.162-2.246) and 1.580 (95%CI: 1.155-2.162) in the fourth quartile, respectively. CONCLUSION: Most participants with MAFLD had normal ALT levels. Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Alanine Transaminase , China/epidemiology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Physical Examination , Reference Values
5.
Nat Commun ; 15(1): 3405, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649682

ABSTRACT

The symbiont Ca. Nanohaloarchaeum antarcticus is obligately dependent on its host Halorubrum lacusprofundi for lipids and other metabolites due to its lack of certain biosynthetic genes. However, it remains unclear which specific lipids or metabolites are acquired from its host, and how the host responds to infection. Here, we explored the lipidome dynamics of the Ca. Nha. antarcticus - Hrr. lacusprofundi symbiotic relationship during co-cultivation. By using a comprehensive untargeted lipidomic methodology, our study reveals that Ca. Nha. antarcticus selectively recruits 110 lipid species from its host, i.e., nearly two-thirds of the total number of host lipids. Lipid profiles of co-cultures displayed shifts in abundances of bacterioruberins and menaquinones and changes in degree of bilayer-forming glycerolipid unsaturation. This likely results in increased membrane fluidity and improved resistance to membrane disruptions, consistent with compensation for higher metabolic load and mechanical stress on host membranes when in contact with Ca. Nha. antarcticus cells. Notably, our findings differ from previous observations of other DPANN symbiont-host systems, where no differences in lipidome composition were reported. Altogether, our work emphasizes the strength of employing untargeted lipidomics approaches to provide details into the dynamics underlying a DPANN symbiont-host system.


Subject(s)
Lipidomics , Symbiosis , Halorubrum/metabolism , Lipid Metabolism , Nanoarchaeota/metabolism , Lipids/chemistry
6.
Acta Diabetol ; 60(4): 563-577, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36658449

ABSTRACT

AIMS: LncRNA SNHG16 and Toll-like receptor-4 (TLR4) participate in diabetes nephropathy. This study investigated whether SNHG16 regulates diabetic renal injury (DRI) via TLR4 and its related mechanism. METHODS: Diabetic mice and high glucose (HG)-induced HRMCs were used to examine the expressions of SNHG16 and TLR4. The SNHG16 expression, cytokines, reactive oxygen species, MDA, SOD, GSH, and fibrosis-related proteins were evaluated in HG-induced HRMCs transfected with sh-NC or sh-SHNG16. RNA immunoprecipitation and RNA pull-down determined the interaction between SNHG16 and EIF4A3 or TLR4 and EIF4A3. We used HG-treated HRMCs or diabetic mice to investigate the roles of TLR4 or SNHG16 in renal injuries. RESULTS: Both SNHG16 and TLR4 were upregulated in diabetic conditions. HG increased serum Scr and BUN, led to significant fibrosis, increased inflammation- and renal fibrosis-related proteins in mice, and increased ROS, MDA, and decreased SOD and GSH in HRMCs. SNHG16 silencing diminished HG-upregulated SNHG16, decreased HG-increased cytokines secretion, ROS, MDA, and fibrosis but increased SOD and GSH. RIP and RNA pull-down confirmed that SNHG16 recruits EIF4A3 to stabilize TLR4 mRNA. TLR4 knockdown alleviated HG-induced renal injuries by suppressing RAS and NF-κB-mediated activation of NLRP3 inflammasomes. SNHG16 knockdown alleviated HG-induced renal injuries in HG-induced HRMCs or diabetic mice. Interestingly, TLR4 overexpression reversed the effects of SNHG16 knockdown. Mechanistically, SNHG16 knockdown alleviated HG-induced renal injuries by suppressing TLR4. CONCLUSION: SNHG16 accelerated HG-induced renal injuries via recruiting EIF4A3 to enhance the stabilization of TLR4 mRNA. The SNGHG16/ELF4A3/TLR4 axis might be a novel target for treating DRI.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , RNA, Long Noncoding , Animals , Mice , Cytokines , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Fibrosis , Inflammasomes/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger , Superoxide Dismutase , Toll-Like Receptor 4/genetics , Humans
7.
Water Res ; 231: 119631, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36682234

ABSTRACT

Fenton-like reactions is attractive for environmental pollutant control, but there is an urgent need to improve the utilisation of hydroxyl radicals (·OH) in practical applications. Here, for the first time, FeOCl is encapsulated within a Metal Organic Framework (MOF) (Materials of Institut Lavoisier-101 (MIL-101(Fe))) as a yolk-shell reactor (FeOCl-MOF) by in situ growth. The interaction between FeOCl and the MOF not only increases the electron density of FeOCl, but also shifts down the d-band centre. The increase of electron density could promote the efficient conversion of H2O2 to ·OH catalysed by FeOCl. And the shift of the d-band centre to the lower energy level facilitates the desorption of ·OH. Experimental and theoretical calculations showed that the high catalytic performance was attributed to the unique yolk-shell structure that concentrates the catalytic and adsorption sites in a confinement space, as well as the improved electron density and d-band centre for efficient generation, rapid desorption and utilized nearby of ·OH. Which is utilized nearby by the organic pollutants adsorbed by the surface MOF, thus greatly improving the effective conversion of H2O2 and the ·OH utilisation (from 25.5% (Fe2+/H2O2) to 77.1% (FeOCl-MOF/H2O2)). In addition, a catalytic reactor was constructed to achieve continuous efficient treatment of organic pollutants. This work provides a Fenton-like microreactor for efficient generation, rapid desorption, and nearby utilization of ·OH to improve future technologies for deep water purification in complex environments.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Reactive Oxygen Species , Metal-Organic Frameworks/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry
8.
Langmuir ; 39(4): 1474-1481, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36641772

ABSTRACT

Carbon nanotubes (CNTs) are a promising material for humidity sensors and wearable electronics due to their solution capability, good flexibility, and high conductivity. However, the performance of CNT-based humidity sensors is limited by their low sensitivity and slow response. Herein CNTs and hydrophilic polymers were mixed to form a composite. The hydrophilicity of the polymers and the network structure of the CNTs empowered the humidity sensors with a high response of 171% and a fast response/recovery time of 23 s/10 s. Owing to the sticky and flexible polymers, the humidity sensors showed strong adhesion to the PET substrate and exhibited outstanding bending durability. Furthermore, the flexible humidity sensor was applied to monitor human breathing and detect finger movements and handshaking.

9.
Orthop Surg ; 15(8): 2138-2143, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36718055

ABSTRACT

OBJECTIVE: Distal clavicle fracture classification directly affects the treatment decisions. It is unclear whether the classification systems implemented differ depending on surgeons' backgrounds. This study aimed to compare the interobserver agreement of four classification systems used for lateral clavicle fractures by shoulder specialists and general trauma surgeons. METHODS: Radiographs of 20 lateral clavicle fractures representing a full spectrum of adult fracture patterns were analyzed by eight experienced shoulder specialists and eight general trauma surgeons from 10 different hospitals. All cases were graded according to the Orthopedic Trauma Association (OTA), Neer, Jäger/Breitner, and Gongji classification systems. To measure observer agreement, Fleiss' kappa coefficient (κ) was applied and assessed. RESULTS: When only X-ray films were presented, both groups achieved fair agreement. However, when the 3D-CT scan images were provided, improved interobserver agreement was found in the specialist group when the OTA, Jäger/Breitner, and Gongji classification systems were used. In the generalist groups, improved agreement was found when using the Gongji classification system. In terms of interobserver reliability, the OTA, Neer, and Jäger/Breitner classification systems showed better agreement among shoulder specialists, while a slightly lower level of agreement was found using the Gongji classification system. For the OTA classification system, interobserver agreement had a mean kappa value of 0.418, ranging from 0.446 (specialist group) to 0.402 (generalist group). For the Neer classification system, interobserver agreement had a mean kappa value of 0.368, ranging from 0.402 (specialist group) to 0.390 (generalist group). For the Jäger/Breitner classification system, the inter-observer agreement had a mean kappa value of 0.380, ranging from 0.413 (specialist group) to 0.404 (generalist group). For the Gongji classification system, interobserver agreement had a mean kappa value of 0.455, ranging from 0.480 (specialist group) to 0.485 (generalist group). CONCLUSION: Generally speaking, 3D-CT scans provide a richer experience that can lead to better results in most classification systems of lateral clavicle fractures, highlighting the value of digitization and specialization in diagnosis and treatment. Competitive interobserver agreement was exhibited in the generalist group using the Gongji classification system, suggesting that the Gongji classification is suitable for general trauma surgeons who are not highly experienced in the shoulder field.


Subject(s)
Fractures, Bone , Surgeons , Adult , Humans , Clavicle/injuries , Observer Variation , Reproducibility of Results , Fractures, Bone/surgery
10.
Glycoconj J ; 39(6): 759-772, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36342595

ABSTRACT

In this study, a water-soluble polysaccharide from Eucommia folium was extracted by hot water and purified using Sephadex G-200 gel columns. The results showed that the purified fraction (EFP) has a molecular weight of 9.98 × 105 Da and consisted of rhamnose, arabinose, galactose, glucose, mannose, xylose, galacturonic acid, and glucuronic acid (molar ratio: 0.226: 1.739: 2.183: 1: 0.155: 0.321: 0.358: 0.047). The combination of infrared spectroscopy and NMR analysis proved that EFP is an acidic polysaccharide whose main chain consists of α-L-Araf-(1 → , → 3,5)-α-Araf-(1 → , → 3)-ß-Galp-(1 → , → 3,6)-ß-Glcp-(1 → , → 2)-α-D-Manp-(1 → , → 4)-α-GalpA-(1 → , → 2,4)-α-Rhap-(1 → . In addition, the in vivo antitumoral activity of EFP was studied using a H22 tumor-bearing mice model. EFP effectively inhibited tumor growth in mice following intragastric administration. By Combining with the results of the apoptosis assay and JC-1 staining analysis, we confirmed that EFP induces apoptosis through the mitochondrial pathway. Furthermore, cell cycle analysis demonstrated that EFP blocks the cell cycle at S phase.


Subject(s)
Polysaccharides , Water , Mice , Animals , Polysaccharides/chemistry , Galactose , Rhamnose , Molecular Weight
11.
Foods ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36359953

ABSTRACT

Dandelion is an edible plant with a variety of bioactive components. This paper mainly reports the antitumor activity of dandelion polysaccharide DLP120 on H22 tumor-bearing mice. DLP120 is an acidic polysaccharide composed of pectin and arabinogalactan. The results indicate that DLP120 markedly inhibited tumor growth in a dose-dependent manner and attenuated and regulated negative effects on organs. In addition, DLP120 not only increased the viability of spleen lymphocytes and natural killer (NK) cells, but also increased the proportion of lymphocyte subsets in peripheral blood. Furthermore, Hematoxylin-Eosin (HE) staining showed that tumor tissues and cells exhibited typical pathology features. Annexin V FITC/PI staining and cell cycle distribution results further confirmed apoptosis and cell cycle arrest in S and G2 phases. Notably, there was a significant accumulation of reactive oxygen species. Western blotting results demonstrated that the expression of p53 was up-regulated in the DLP120 group. Moreover, the pro-apoptotic protein Bax was up-regulated while the inhibitory-apoptotic protein Bcl-2 was down-regulated. In addition, the expression of Fas and FasL, associated with the death receptor pathway, were also up-regulated. Overall, administration of DLP120 in H22 tumor-bearing mice can not only enhance immunity but also directly induce tumor cell apoptosis.

12.
Nanotechnology ; 34(4)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36265462

ABSTRACT

Flexible transparent electrodes for touch panels, solar cells, and wearable electronics are in great demand in recent years, and the silver nanowire (AgNW) flexible transparent electrode (FTE) is among the top candidates due to its excellent light transmittance and flexibility and the highest conductivity of silver among all metals. However, the conductivity of an AgNWs network has long been limited by the large contact resistance. Here we show a room-temperature solution process to tackle the challenge by nanojoining AgNWs with two-dimensional graphene oxide (GO). The conductivity of the AgNWs network is improved 18 times due to the enhanced junctions between AgNWs by the coated GOs, and the AgNW-GO FTE exhibits a low sheet resistance of 23 Ohm sq-1and 88% light transmittance. It is stable under high temperature and current and their flexibility is intact after 1000 cycles of bending. Measurements of a bifunctional electrochromic device shows the high performance of the AgNW-GO FTE as a FTE.

13.
J Environ Manage ; 322: 115983, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36058070

ABSTRACT

With astonishing and rapid development in China since the Reform and Opening-up in 1978, serious air pollution has become a great challenge. A better understanding of the response of PM2.5 pollution to socioeconomic development after the Reform and Opening-up policy is benefit for pollution control. However, heterogeneous influences of biophysical and socioeconomic activities on PM2.5 pollution pose great challenges in statistical simulation of PM2.5. Few statistical model regards aerosol species as the explanatory variables for heterogeneous formation mechanism to retrieve PM2.5 concentration. In this research, monthly PM2.5 concentration in China during 1980-2020 was reconstructed by a novel statistical strategy considering aerosol components (AC-RF). Three cross-validation (CV) methods, sample-based CV, spatial-based CV and temporal-based CV results indicated satisfactory performance of AC-RF model with correlation coefficient (R) of 0.92, 0.90, 0.86, respectively. A three-stage concluded on PM2.5 concentration annual variation in China was drawn as followed: Before 2000, PM2.5 level in China represented smooth evolution and mainly influenced by natural events with polluted region locating in Xinjiang province, North China and Central China. Since 2000, PM2.5 concentration increased to high level in the context of rapid socioeconomic development. Severe air pollution covered Jing-Jin-Ji agglomeration, Central China and Sichuan Basin. During 2012-2020, PM2.5 declined and polluted region shrank, which was benefited by the strictest-ever air pollution control measures. Based on aerosol components analysis, sulfate aerosol exhibited the most significant increase trend in recent 40 years and black aerosol variation is the most closely related to PM2.5 pollution. In conclusion, unsustainable development is the culprit for air quality deterioration. Strict and continuous air pollution control strategies are effective for air quality improvement.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring/methods , Particulate Matter/analysis , Sulfates/analysis
14.
Adv Sci (Weinh) ; 9(22): e2202177, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35666075

ABSTRACT

Two-dimensional (2D) magnetic semiconductors are considered to have great application prospects in spintronic logic devices, memory devices, and photodetectors, due to their unique structures and outstanding physical properties in 2D confinement. Understanding the influence of magnetism on optical/optoelectronic properties of 2D magnetic semiconductors is a significant issue for constructing multifunctional electronic devices and implementing sophisticated functions. Herein, the influence of spin ordering and magnons on the optical/optoelectronic properties of 2D magnetic semiconductor α-MnSe synthesized by space-confined chemical vapor deposition (CVD) is explored systematically. The spin-ordering-induced magnetic phase transition triggers temperature-dependent photoluminescence spectra to produce a huge transition at Néel temperature (TN  ≈ 160 K). The magnons- and defects-induced emissions are the primary luminescence path below TN and direct internal 4 a T1g →6 A1g transition-induced emissions are the main luminescence path above TN . Additionally, the magnons and defect structures endow 2D α-MnSe with a broadband luminescence from 550 to 880 nm, and an ultraviolet-near-infrared photoresponse from 365 to 808 nm. Moreover, the device also demonstrates improved photodetection performance at 80 K, possibly influenced by spin ordering and trap states associated with defects. These above findings indicate that 2D magnetic semiconductor α-MnSe provides an excellent platform for magneto-optical and magneto-optoelectronic research.

15.
Mil Med Res ; 9(1): 32, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715833

ABSTRACT

BACKGROUND: Due to the outbreak and rapid spread of coronavirus disease 2019 (COVID-19), more than 160 million patients have become convalescents worldwide to date. Significant alterations have occurred in the gut and oral microbiome and metabonomics of patients with COVID-19. However, it is unknown whether their characteristics return to normal after the 1-year recovery. METHODS: We recruited 35 confirmed patients to provide specimens at discharge and one year later, as well as 160 healthy controls. A total of 497 samples were prospectively collected, including 219 tongue-coating, 129 stool and 149 plasma samples. Tongue-coating and stool samples were subjected to 16S rRNA sequencing, and plasma samples were subjected to untargeted metabolomics testing. RESULTS: The oral and gut microbiome and metabolomics characteristics of the 1-year convalescents were restored to a large extent but did not completely return to normal. In the recovery process, the microbial diversity gradually increased. Butyric acid-producing microbes and Bifidobacterium gradually increased, whereas lipopolysaccharide-producing microbes gradually decreased. In addition, sphingosine-1-phosphate, which is closely related to the inflammatory factor storm of COVID-19, increased significantly during the recovery process. Moreover, the predictive models established based on the microbiome and metabolites of patients at the time of discharge reached high efficacy in predicting their neutralizing antibody levels one year later. CONCLUSIONS: This study is the first to characterize the oral and gut microbiome and metabonomics in 1-year convalescents of COVID-19. The key microbiome and metabolites in the process of recovery were identified, and provided new treatment ideas for accelerating recovery. And the predictive models based on the microbiome and metabolomics afford new insights for predicting the recovery situation which benefited affected individuals and healthcare.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Follow-Up Studies , Humans , Metabolomics , RNA, Ribosomal, 16S/genetics
16.
Chemosphere ; 299: 134481, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35378167

ABSTRACT

To enhance the efficiency of photogenerated electron transport in the photo-Fenton reaction, we report a Fe-doped UiO-66 containing Fe-O-Zr bonds for the photo-Fenton reaction system. The modulation changes the energy bandgap from 3.89 eV to 2.02 eV, and its absorption edge is red-shifted from the UV region to the visible range. Simultaneously, Fe-O-Zr reduces the redox internal resistance, enhances the photocurrent and catalytic process, and suppresses the compounding of photogenerated electrons and holes. These promote the valence cycling of Fe(III)/Fe(II) in the photo-Fenton reaction. Compared with UiO-66, the hydroxyl radical generation efficiency of this reaction system was increased by 5.8 times (UiO-66: 0.0009 mM/min, FeUiO-1: 0.0053 mM/min). The degradation efficiency of BPA was increased by 100.8 times (UiO-66: 0.0012 min-1, FeUiO-1: 0.121 min-1), and the removal rate of TOC also reached 69.55%. The removal rate of BPA was maintained at more than 85% through 5 cycles. The reaction system was able to maintain a removal rate more than 97% at pH:3-9. In the presence of anions, such as Cl-, SO42-, NO32- (10 mM), the degradation rates of BPA were still above 94%. The catalytic efficiency was 2.02 times higher under natural light than relative to dark conditions. It was demonstrated by EPR and inhibition experiments that the main active species in the reaction were hydroxyl radicals and vacancies. The HOMO energy level and LUMO energy level of the intermediates were analyzed, and the possible degradation pathways of the active species were speculated. Evaluation of the biological toxicity of intermediates demonstrated that the system can effectively detoxify BPA. This investigation provides a reference method to enhance the efficiency of the photo-Fenton reaction of MOFs.


Subject(s)
Ferric Compounds , Hydrogen Peroxide , Benzhydryl Compounds , Electronics , Hydrogen Peroxide/chemistry , Hydroxyl Radical , Metal-Organic Frameworks , Oxidation-Reduction , Phenols , Phthalic Acids
17.
J Hazard Mater ; 429: 128299, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35077971

ABSTRACT

Metal-organic frameworks (MOFs) have attracted more attention because of their excellent environmental catalytic capabilities. Modulation approach as an advanced assistant strategy is vital essential to enhancing the performance of MOFs. In this study, the modulated method was used to successfully synthesize a group of Fe-based MOFs, with formic acid as the modulator on the synthesis mixture. The most modulated sample Fe-MOFs-2 exhibit high specific surface areas and higher catalytic activity, which could effectively degrade SMX via PS activation, with almost 95% removal efficiency within 120 min. The results revealed that the % RSE of modulated Fe-MOFs-2 increased from 2.31 to 3.27 when compared with the origin Fe-MOFs. This may be due to the addition of formic acid induces the formation of more coordinatively unsaturated metal sites in the catalyst, resulting in structural defects. In addition, the quenching experiment and EPR analysis verified SO4-·and·OH as the major active free radicals in the degradation process. Modulated Fe-MOFs-2 demonstrated good reusability and stability under fifth cycles. Finally, four possible degradation pathways and catalytic mechanism of Fe-MOFs-2 was tentatively proposed. Our work provides insights into the rational design of modulated Fe-MOFs as promising heterogeneous catalysts for advanced wastewater treatment.


Subject(s)
Metal-Organic Frameworks , Water Purification , Catalysis , Formates , Sulfamethoxazole
18.
ISME Commun ; 2(1): 121, 2022 Dec 24.
Article in English | MEDLINE | ID: mdl-37938789

ABSTRACT

Sulfurimonas species are among the most abundant sulfur-oxidizing bacteria in the marine environment. They are capable of using different electron acceptors, this metabolic flexibility is favorable for their niche adaptation in redoxclines. When oxygen is depleted, most Sulfurimonas spp. (e.g., Sulfurimonas gotlandica) use nitrate ([Formula: see text]) as an electron acceptor to oxidize sulfur, including sulfide (HS-), S0 and thiosulfate, for energy production. Candidatus Sulfurimonas marisnigri SoZ1 and Candidatus Sulfurimonas baltica GD2, recently isolated from the redoxclines of the Black Sea and Baltic Sea respectively, have been shown to use manganese dioxide (MnO2) rather than [Formula: see text] for sulfur oxidation. The use of different electron acceptors is also dependent on differences in the electron transport chains embedded in the cellular membrane, therefore changes in the membrane, including its lipid composition, are expected but are so far unexplored. Here, we used untargeted lipidomic analysis to reveal changes in the composition of the lipidomes of three representative Sulfurimonas species grown using either [Formula: see text] and MnO2. We found that all Sulfurimonas spp. produce a series of novel phosphatidyldiazoalkyl-diacylglycerol lipids. Ca. Sulfurimonas baltica GD2 adapts its membrane lipid composition depending on the electron acceptors it utilizes for growth and survival. When carrying out MnO2-dependent sulfur oxidation, the novel phosphatidyldiazoalkyl-diacylglycerol headgroup comprises shorter alkyl moieties than when sulfur oxidation is [Formula: see text]-dependent. This is the first report of membrane lipid adaptation when an organism is grown with different electron acceptors. We suggest novel diazoalkyl lipids have the potential to be used as a biomarker for different conditions in redox-stratified systems.

19.
Front Microbiol ; 12: 659302, 2021.
Article in English | MEDLINE | ID: mdl-34367080

ABSTRACT

Lipids, as one of the main building blocks of cells, can provide valuable information on microorganisms in the environment. Traditionally, gas or liquid chromatography coupled to mass spectrometry (MS) has been used to analyze environmental lipids. The resulting spectra were then processed through individual peak identification and comparison with previously published mass spectra. Here, we present an untargeted analysis of MS1 spectral data generated by ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry of environmental microbial communities. Rather than attempting to relate each mass spectrum to a specific compound, we have treated each mass spectrum as a component, which can be clustered together with other components based on similarity in their abundance depth profiles through the water column. We present this untargeted data visualization method on lipids of suspended particles from the water column of the Black Sea, which included >14,000 components. These components form clusters that correspond with distinct microbial communities driven by the highly stratified water column. The clusters include both known and unknown compounds, predominantly lipids, demonstrating the value of this rapid approach to visualize component distributions and identify novel lipid biomarkers.

20.
Front Microbiol ; 12: 659315, 2021.
Article in English | MEDLINE | ID: mdl-34322097

ABSTRACT

Structurally diverse, specialized lipids are crucial components of microbial membranes and other organelles and play essential roles in ecological functioning. The detection of such lipids in the environment can reveal not only the occurrence of specific microbes but also the physicochemical conditions to which they are adapted to. Traditionally, liquid chromatography coupled with mass spectrometry allowed for the detection of lipids based on chromatographic separation and individual peak identification, resulting in a limited data acquisition and targeting of certain lipid groups. Here, we explored a comprehensive profiling of microbial lipids throughout the water column of a marine euxinic basin (Black Sea) using ultra high-pressure liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS). An information theory framework combined with molecular networking based on the similarity of the mass spectra of lipids enabled us to capture lipidomic diversity and specificity in the environment, identify novel lipids, differentiate microbial sources within a lipid group, and discover potential biomarkers for biogeochemical processes. The workflow presented here allows microbial ecologists and biogeochemists to process quickly and efficiently vast amounts of lipidome data to understand microbial lipids characteristics in ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL