Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Sci Total Environ ; 951: 175469, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39153615

ABSTRACT

Exposure to traffic-related air pollution and ultrafine particles (<100 nm; UFP) is linked with neurodegeneration. However, the impact of the aromatic content in fuels and the contribution of different fractions of UFP, i.e., solid UFP vs SVOC UFP, on neuronal function is unknown. We therefore studied effects on neuronal activity and viability in rat primary cortical cells exposed for up to 120 h to copper oxide particles (CuO) or UFP (solid and SVOC) emitted from a heavy-duty diesel engine fueled with petroleum diesel (A20; 20 % aromatics) or Hydrotreated Vegetable Oil-type fuel (A0; 0.1 % aromatics), or solid UFP emitted from a non-road Kubota engine fueled with A20. Moreover, effects of UFP and CuO upon simulated inhalation exposure were studied by exposing an lung model (Calu-3 and THP-1 cells) for 48 h and subsequently exposing the cortical cells to the medium collected from the basal compartment of the lung model. Additionally, cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress were studied in the lung model after 48 h exposure to UFP and CuO. Compared to control, direct exposure to CuO and SVOC UFP decreased neuronal activity, which was partly associated with cytotoxicity. Effects on neuronal activity upon direct exposure to solid UFP were limited. A20-derived UFP (solid and SVOC) were more potent in altering neuronal function and viability than A0 counterparts. Effects on neuronal activity from simulated inhalation exposure were minor compared to direct exposures. In the lung model, CuO and A20-derived UFP increased cytokine release compared to control, whereas CuO and SVOC A20 altered gene expression indicative for oxidative stress. Our data indicate that SVOC UFP exhibit higher (neuro)toxic potency for altering neuronal activity in rat primary cortical cells than the solid fraction. Moreover, our data suggest that reducing the aromatic content in fuel decreases the (neuro)toxic potency of emitted UFP.


Subject(s)
Air Pollutants , Inhalation Exposure , Particulate Matter , Vehicle Emissions , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Particulate Matter/toxicity , Rats , Animals , Air Pollutants/toxicity , Air Pollutants/analysis , Neurons/drug effects , Particle Size , Copper/toxicity , Cell Survival/drug effects
2.
Neurology ; 103(4): e209698, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39102613

ABSTRACT

BACKGROUND AND OBJECTIVES: Neurolymphomatosis (NL) refers to lymphomatous infiltration of the peripheral nervous system (PNS). NL diagnosis and treatment are challenging given the broad differential diagnosis of peripheral neuropathy, the lack of larger cohorts, and the subsequent unavailability of prognostic factors or consensus therapy. This study aimed to define characteristics and prognostic factors of NL. METHODS: A systematic review of the literature (2004-2023) was performed using PubMed and Scopus databases and reported following PRISMA guidelines. Studies reporting individual patient data on cases with definitive NL diagnosis were included. Clinical, radiologic, pathologic, and outcome information were extracted. Univariable and multivariable survival analyses were performed using log-rank tests and Cox proportional hazard models. RESULTS: A total of 459 NL cases from 264 studies were accumulated. NL was the first manifestation of malignancy (primary NL) in 197 patients. PNS relapse of known non-Hodgkin lymphoma (secondary NL) occurred in 262 cases after a median 12 months. NL predominantly presented with rapidly deteriorating, asymmetric painful polyneuropathy. Infiltrated structures included peripheral nerves (56%), nerve roots (52%), plexus (33%), and cranial nerves (32%). Diagnosis was established at a median of 3 months after symptom onset with substantial delays in primary NL. It mainly relied on PNS biopsy or FDG-PET, which carried high diagnostic yields (>90%). Postmortem diagnoses were rare (3%). Most cases were classified as B-cell (90%) lymphomas. Tumor-directed therapy was administered in 96% of patients and typically consisted of methotrexate or rituximab-based polychemotherapy. The median overall survival was 18 months. Primary NL without concurrent systemic disease outside the nervous system (hazard ratio [HR]: 0.44; 95% CI 0.25-0.78; p = 0.005), performance status (ECOG <2, HR: 0.30; 95% CI 0.18-0.52; p < 0.0001), and rituximab-based treatment (HR: 0.46; 95% CI 0.28-0.73; p = 0.001) were identified as favorable prognostic markers on multivariable analysis when adjusting for clinical and sociodemographic parameters. DISCUSSION: Advances in neuroimaging modalities, particularly FDG-PET, facilitate NL diagnosis and offer a high diagnostic yield. Yet, diagnostic delays in primary NL remain common. Rituximab-based therapy improves NL outcome. Findings may assist clinicians in early recognition, prognostic stratification, and treatment of NL.


Subject(s)
Neurolymphomatosis , Humans , Neurolymphomatosis/therapy , Neurolymphomatosis/diagnostic imaging , Disease Management , Prognosis
3.
J Neurooncol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088157

ABSTRACT

PURPOSE: This study investigates the biological effect of Tumor Treating Fields (TTFields) on key drivers of glioblastoma's malignancy-tumor microtube (TM) formation-and on the function and overall integrity of the tumor cell network. METHOD: Using a two-dimensional monoculture GB cell network model (2DTM) of primary glioblastoma cell (GBC) cultures (S24, BG5 or T269), we evaluated the effects of TTFields on cell density, interconnectivity and structural integrity of the tumor network. We also analyzed calcium (Ca2+) transient dynamics and network morphology, validating findings in patient-derived tumoroids and brain tumor organoids. RESULTS: In the 2DTM assay, TTFields reduced cell density by 85-88% and disrupted network interconnectivity, particularly in cells with multiple TMs. A "crooked TM" phenotype emerged in 5-6% of treated cells, rarely seen in controls. Ca2+ transients were significantly compromised, with global Ca2+ activity reduced by 51-83%, active and periodic cells by over 50%, and intercellular co-activity by 52% in S24, and almost completely in BG5 GBCs. The effects were more pronounced at 200 kHz compared to a 50 kHz TTFields. Similar reductions in Ca2+ activity were observed in patient-derived tumoroids. In brain tumor organoids, TTFields significantly reduced tumor cell proliferation and infiltration. CONCLUSION: Our comprehensive study provides new insights into the multiple effects of Inovitro-modeled TTFields on glioma progression, morphology and network dynamics in vitro. Future in vivo studies to verify our in vitro findings may provide the basis for a deeper understanding and optimization of TTFields as a therapeutic modality in the treatment of GB.

4.
Cancer Med ; 13(14): e70026, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041188

ABSTRACT

BACKGROUND: High-risk soft tissue sarcomas of the extremities and trunk wall (eSTS), as defined by the Sarculator nomogram, are more likely to benefit from (neo)adjuvant anthracycline-based therapy compared to low/intermediate-risk patients. The biology underpinning these differential treatment outcomes remain unknown. METHODS: We analysed proteomic profiles and clinical outcomes of 123 eSTS patients. A Cox model for overall survival including the Sarculator was fitted to individual data to define four risk groups. A DNA replication protein signature-Sarcoma Proteomic Module 6 (SPM6) was evaluated for association with clinicopathological factors and risk groups. SPM6 was added as a covariate together with Sarculator in a multivariable Cox model to assess improvement in prognostic risk stratification. RESULTS: DNA replication and cell cycle proteins were upregulated in high-risk versus very low-risk patients. Evaluation of the functional effects of CRISPR-Cas9 gene knockdown of proteins enriched in high-risk patients using the cancer cell line encyclopaedia database identified candidate drug targets. SPM6 was significantly associated with tumour malignancy grade (p = 1.6e-06), histology (p = 1.4e-05) and risk groups (p = 2.6e-06). Cox model analysis showed that SPM6 substantially contributed to a better calibration of the Sarculator nomogram (Index of Prediction Accuracy = 0.109 for Sarculator alone versus 0.165 for Sarculator + SPM6). CONCLUSIONS: Risk stratification of patient with STS is defined by distinct biological pathways across a range of cancer hallmarks. Incorporation of SPM6 protein signature improves prognostic risk stratification of the Sarculator nomogram. This study highlights the utility of integrating protein signatures for the development of next-generation nomograms.


Subject(s)
Extremities , Nomograms , Proteomics , Sarcoma , Humans , Male , Female , Sarcoma/metabolism , Sarcoma/genetics , Sarcoma/pathology , Sarcoma/mortality , Middle Aged , Prognosis , Proteomics/methods , Extremities/pathology , Risk Assessment/methods , Adult , Aged , Torso , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
6.
Insects ; 15(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38921112

ABSTRACT

The mechanisms of action behind decreased mite reproduction (DMR) are still unknown, but current hypotheses state that DMR is the result of brood-intrinsic and/or external disturbances in the V. destructor-honey bee pupa signal interactions. For accurate and precise DMR phenotyping, sufficient single infested honey bee brood cells are required (e.g., 35), which requires extensive labor and time and may exclude many samples not reaching the threshold. We defined a new comprehensive trait called the 'mean V. destructor reproduction rate' (mVR), which describes the mean number of offspring mites per infested cell in the sample while compensating for the reduced number of offspring with increasing multiple infested cells. We found a significant correlation between mVR and DMR, allowing for an estimation of DMR based on the mVR only. When the mVR was calculated with 10 infested cells, we found an average variation in mVR of 16.8%. For the same variation in DMR determination, 40 single infested cells are required. This broader look at V. destructor resistance phenotyping can improve the applicability and effectiveness of traits related to V. destructor reproduction in honey bee breeding programs.

7.
Insects ; 15(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921134

ABSTRACT

Implementation of marker-assisted selection (MAS) in modern beekeeping would improve sustainability, especially in breeding programs aiming for resilience against the parasitic mite Varroa destructor. Selecting honey bee colonies for natural resistance traits, such as brood-intrinsic suppression of varroa mite reproduction, reduces the use of chemical acaricides while respecting local adaptation. In 2019, eight genomic variants associated with varroa non-reproduction in drone brood were discovered in a single colony from the Amsterdam Water Dune population in the Netherlands. Recently, a new study tested the applicability of these eight genetic variants for the same phenotype on a population-wide scale in Flanders, Belgium. As the properties of some variants varied between the two studies, one hypothesized that the difference in genetic ancestry of the sampled colonies may underly these contribution shifts. In order to frame this, we determined the allele frequencies of the eight genetic variants in more than 360 Apis mellifera colonies across the European continent and found that variant type allele frequencies of these variants are primarily related to the A. mellifera subspecies or phylogenetic honey bee lineage. Our results confirm that population-specific genetic markers should always be evaluated in a new population prior to using them in MAS programs.

8.
PLoS One ; 19(6): e0302183, 2024.
Article in English | MEDLINE | ID: mdl-38923973

ABSTRACT

While studies on the sublethal effects of chemical residues in beeswax on adult honey bees are increasing, the study protocols assessing the impacts on honey bee brood in realistic conditions still need to be investigated. Moreover, little is known about the residue's effect on gene expression in honey bee brood. This study reports the effects of chlorpyriphos-ethyl, acrinathrin and stearin worker pupae exposure through contaminated or adulterated beeswax on the gene expression of some key health indicators, using a novel in vivo realistic model. Larvae were reared in acrinathrin (12.5, 25, 10 and 100 ppb) and chlorpyriphos-ethyl (5, 10, 500 and 5000 ppb) contaminated or stearin adulterated beeswax (3, 4, 5, 6 and 9%) in newly formed colonies to reduce the influence of external factors. On day 11, mortality rates were assessed. Honey bee pupae were extracted from the comb after 19 days of rearing and were analysed for the gene expression profile of four genes involved in the immune response to pathogens and environmental stress factors (Imd, dorsal, domeless and defensin), and two genes involved in detoxifications mechanisms (CYP6AS14 and CYP9Q3). We found no linear relation between the increase in the pesticide concentrations and the brood mortality rates, unlike stearin where an increase in stearin percentage led to an exponential increase in brood mortality. The immune system of pupae raised in acrinathrin contaminated wax was triggered and the expression of CYP6AS14 was significantly upregulated (exposure to 12.5 and 25 ppb). Almost all expression levels of the tested immune and detoxification genes were down-regulated when pupae were exposed to chlorpyrifos-contaminated wax. The exposure to stearin triggered the immune system and detoxification system of the pupae. The identification of substance-specific response factors might ultimately serve to identify molecules that are safer for bees and the ecosystem's health.


Subject(s)
Pesticide Residues , Waxes , Animals , Bees/genetics , Bees/drug effects , Pesticide Residues/toxicity , Pesticide Residues/analysis , Pupa/drug effects , Pupa/genetics , Larva/drug effects , Larva/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Gene Expression Regulation/drug effects
9.
Microbiol Spectr ; 12(7): e0358123, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38860822

ABSTRACT

In recent years, managed honey bee colonies have been suffering from an increasing number of biotic and abiotic stressors, resulting in numerous losses of colonies worldwide. A pan-European study, EPILOBEE, estimated the colony loss in Belgium to be 32.4% in 2012 and 14.8% in 2013. In the current study, absolute viral loads of four known honey bee viruses (DWV-A, DWV-B, AmFV, and BMLV) and three novel putative honey bee viruses (Apis orthomyxovirus 1, apthili virus, and apparli virus) were determined in 300 Flemish honey bee samples, and associations with winter survival were determined. This revealed that, in addition to the known influence of DWV-A and DWV-B on colony health, one of the newly described viruses (apthili virus) shows a strong yearly difference and is also associated with winter survival. Furthermore, all scrutinized viruses revealed significant spatial clustering patterns, implying that despite the limited surface area of Flanders, local virus transmission is paramount. The vast majority of samples were positive for at least one of the seven investigated viruses, and up to 20% of samples were positive for at least one of the three novel viruses. One of those three, Apis orthomyxovirus 1, was shown to be a genuine honey bee-infecting virus, able to infect all developmental stages of the honey bee, as well as the Varroa destructor mite. These results shed light on the most prevalent viruses in Belgium and their roles in the winter survival of honey bee colonies. IMPORTANCE: The western honey bee (Apis mellifera) is a highly effective pollinator of flowering plants, including many crops, which gives honey bees an outstanding importance both ecologically and economically. Alarmingly high annual loss rates of managed honey bee colonies are a growing concern for beekeepers and scientists and have prompted a significant research effort toward bee health. Several detrimental factors have been identified, such as varroa mite infestation and disease from various bacterial and viral agents, but annual differences are often not elucidated. In this study, we utilize the viral metagenomic survey of the EPILOBEE project, a European research program for bee health, to elaborate on the most abundant bee viruses of Flanders. We complement the existing metagenomic data with absolute viral loads and their spatial and temporal distributions. Furthermore, we identify Apis orthomyxovirus 1 as a potentially emerging pathogen, as we find evidence for its active replication honey bees.


Subject(s)
Insect Viruses , Seasons , Animals , Bees/virology , Bees/parasitology , Belgium , Insect Viruses/genetics , Insect Viruses/isolation & purification , Insect Viruses/physiology , Viral Load , Phylogeny , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Viruses/classification
10.
Trends Ecol Evol ; 39(8): 771-784, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849221

ABSTRACT

Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.


Subject(s)
Artificial Intelligence , Classification , Classification/methods , Biodiversity , Genomics
11.
JAMA Oncol ; 10(8): 1121-1128, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38900421

ABSTRACT

Importance: Desmoid tumor (DT) is a rare and locally aggressive monoclonal, fibroblastic proliferation characterized by a variable and often unpredictable clinical course. Previously, surgery was the standard primary treatment modality; however, within the past decade, a paradigm shift toward less-invasive management has been introduced and an effort to harmonize the strategy among clinicians has been made. To update the 2020 global evidence-based consensus guideline on the management of patients with DT, the Desmoid Tumor Working Group convened a 1-day consensus meeting in Milan, Italy, on June 30, 2023, under the auspices of the European Reference Network on Rare Adult Solid Cancers and Sarcoma Patient Advocacy Global Network, the Desmoid Foundation Italy, and the Desmoid Tumor Research Foundation. The meeting brought together over 90 adult and pediatric sarcoma experts from different disciplines as well as patients and patient advocates from around the world. Observations: The 2023 update of the global evidence-based consensus guideline focused on the positioning of local therapies alongside surgery and radiotherapy in the treatment algorithm as well as the positioning of the newest class of medical agents, such as γ-secretase inhibitors. Literature searches of MEDLINE and Embase databases were performed for English-language randomized clinical trials (RCTs) of systemic therapies to obtain data to support the consensus recommendations. Of the 18 full-text articles retrieved, only 4 articles met the inclusion criteria. The 2023 consensus guideline is informed by a number of new aspects, including data for local ablative therapies such as cryotherapy; other indications for surgery; and the γ-secretase inhibitor nirogacestat, the first representative of the newest class of medical agents and first approved drug for DT. Management of DT is complex and should be carried out exclusively in designated DT referral centers equipped with a multidisciplinary tumor board. Selection of the appropriate strategy should consider DT-related symptoms, associated risks, tumor location, disease morbidities, available treatment options, and preferences of individual patients. Conclusions and Relevance: The therapeutic armamentarium of DT therapy is continually expanding. It is imperative to carefully select the management strategy for each patient with DT to optimize tumor control and enhance quality of life.


Subject(s)
Fibromatosis, Aggressive , Humans , Fibromatosis, Aggressive/therapy , Fibromatosis, Aggressive/pathology , Fibromatosis, Aggressive/drug therapy
12.
Clin EEG Neurosci ; : 15500594241253910, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751125

ABSTRACT

Alterations of mismatch responses (ie, neural activity evoked by unexpected stimuli) are often considered a potential biomarker of schizophrenia. Going beyond establishing the type of observed alterations found in diagnosed patients and related cohorts, computational methods can yield valuable insights into the underlying disruptions of neural mechanisms and cognitive function. Here, we adopt a typology of model-based approaches from computational cognitive neuroscience, providing an overview of the study of mismatch responses and their alterations in schizophrenia from four complementary perspectives: (a) connectivity models, (b) decoding models, (c) neural network models, and (d) cognitive models. Connectivity models aim at inferring the effective connectivity patterns between brain regions that may underlie mismatch responses measured at the sensor level. Decoding models use multivariate spatiotemporal mismatch response patterns to infer the type of sensory violations or to classify participants based on their diagnosis. Neural network models such as deep convolutional neural networks can be used for improved classification performance as well as for a systematic study of various aspects of empirical data. Finally, cognitive models quantify mismatch responses in terms of signaling and updating perceptual predictions over time. In addition to describing the available methodology and reviewing the results of recent computational psychiatry studies, we offer suggestions for future work applying model-based techniques to advance the study of mismatch responses in schizophrenia.

13.
Br J Cancer ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734790

ABSTRACT

Soft tissue sarcomas (STS) are rare tumours arising in mesenchymal tissues and can occur almost anywhere in the body. Their rarity, and the heterogeneity of subtype and location, means that developing evidence-based guidelines is complicated by the limitations of the data available. This makes it more important that STS are managed by expert multidisciplinary teams, to ensure consistent and optimal treatment, recruitment to clinical trials, and the ongoing accumulation of further data and knowledge. The development of appropriate guidance, by an experienced panel referring to the evidence available, is therefore a useful foundation on which to build progress in the field. These guidelines are an update of the previous versions published in 2010 and 2016 [1, 2]. The original guidelines were drawn up by a panel of UK sarcoma specialists convened under the auspices of the British Sarcoma Group (BSG) and were intended to provide a framework for the multidisciplinary care of patients with soft tissue sarcomas. This iteration of the guidance, as well as updating the general multidisciplinary management of soft tissue sarcoma, includes specific sections relating to the management of sarcomas at defined anatomical sites: gynaecological sarcomas, retroperitoneal sarcomas, breast sarcomas, and skin sarcomas. These are generally managed collaboratively by site specific multidisciplinary teams linked to the regional sarcoma specialist team, as stipulated in the recently published sarcoma service specification [3]. In the UK, any patient with a suspected soft tissue sarcoma should be referred to a specialist regional soft tissues sarcoma service, to be managed by a specialist sarcoma multidisciplinary team. Once the diagnosis has been confirmed using appropriate imaging and a tissue biopsy, the main modality of management is usually surgical excision performed by a specialist surgeon, combined with pre- or post-operative radiotherapy for tumours at higher risk for local recurrence. Systemic anti-cancer therapy (SACT) may be utilised in cases where the histological subtype is considered more sensitive to systemic treatment. Regular follow-up is recommended to assess local control, development of metastatic disease, and any late effects of treatment.

14.
PLoS One ; 19(5): e0298754, 2024.
Article in English | MEDLINE | ID: mdl-38743705

ABSTRACT

The grey rockcod, Lepidonotothen squamifrons is an important prey species for seals, penguins and Patagonian toothfish (Dissostichus eleginoides) in the Southern Ocean. Across the Kerguelen Plateau, the species was fished to commercial extinction (ca. 152 000 tonnes between 1971 and 1978) prior to the declaration of the French Exclusive Economic Zone in 1979 and the Australian Fishing Zone in 1981. In this study we estimate; age, growth, maturity, sex ratio, body condition (weight-at-length), and population density of grey rockcod using data from 19 trawl surveys from 1990 to 2014. There appeared to be three distinct geographical populations, with differences in biological parameters within each population. This study has identified separate metapopulations within the southern region of the Kerguelen Plateau and we recommend that management should take into account the different characteristics of these populations, and that this meta-population structure may be a factor in why this species required several decades to show signs of recovery.


Subject(s)
Perciformes , Population Dynamics , Animals , Perciformes/growth & development , Perciformes/physiology , Female , Male , Islands , Population Density
15.
Sci Rep ; 14(1): 9612, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671077

ABSTRACT

The Carniolan honey bee (Apis mellifera carnica) plays an essential role in crop pollination, environment diversity, and the production of honey bee products. However, the health of individual honey bees and their colonies is under pressure due to multiple stressors, including viruses as a significant threat to bees. Monitoring various virus infections could be a crucial selection tool during queen rearing. In the present study, samples from all developmental stages (eggs, larvae, pupae, and queens) were screened for the incidence of seven viruses during queen rearing in Slovenia. The screening of a total of 108 samples from five queen breeders was performed by the RT-qPCR assays. The results showed that the highest incidence was observed for black queen cell virus (BQCV), Lake Sinai virus 3 (LSV3), deformed wing virus B (DWV-B), and sacbrood virus (SBV). The highest viral load was detected in queens (6.07 log10 copies/queen) and larvae (5.50 log10 copies/larva) for BQCV, followed by SBV in larvae (5.47 log10 copies/larva). When comparing all the honey bee developmental stages, the eggs exhibited general screening for virus incidence and load in queen mother colonies. The results suggest that analyzing eggs is a good indicator of resilience to virus infection during queen development.


Subject(s)
Larva , Animals , Bees/virology , Larva/virology , RNA Viruses/genetics , RNA Viruses/isolation & purification , Insect Viruses/genetics , Insect Viruses/isolation & purification , Dicistroviridae/genetics , Dicistroviridae/pathogenicity , Dicistroviridae/isolation & purification , Viral Load , Ovum/virology , Female , Pupa/virology , Slovenia/epidemiology
16.
Sci Rep ; 14(1): 7866, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570723

ABSTRACT

In 2019, a joint eight-variant model was published in which eight single nucleotide polymorphisms (SNPs) in seven Apis mellifera genes were associated with Varroa destructor drone brood resistance (DBR, i.e. mite non-reproduction in drone brood). As this model was derived from only one Darwinian Black Bee Box colony, it could not directly be applied on a population-overarching scale in the northern part of Belgium (Flanders), where beekeepers prefer the carnica subspecies. To determine whether these eight SNPs remained associated with the DBR trait on a Flemish colony-broad scope, we performed population-wide modelling through sampling of various A. mellifera carnica colonies, DBR scoring of Varroa-infested drone brood and variant genotyping. Novel eight-variant modelling was performed and the classification performance of the eight SNPs was evaluated. Besides, we built a reduced three-variant model retaining only three genetic variants and found that this model classified 76% of the phenotyped drones correctly. To examine the spread of beneficial alleles and predict the DBR probability distribution in Flanders, we determined the allelic frequencies of the three variants in 292 A. mellifera carnica queens. As such, this research reveals prospects of marker-assisted selection for Varroa drone brood resistance in honeybees.


Subject(s)
Varroidae , Bees/genetics , Animals , Varroidae/genetics , Polymorphism, Single Nucleotide , Gene Frequency , Belgium , Phenotype
17.
Materials (Basel) ; 17(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473495

ABSTRACT

The ferroelectric phase transition of the perovskite barium titanate as well as its technical importance regarding the switching of respective polar properties is well known and has been thoroughly studied, both experimentally and on theoretical grounds. While details about the phase diagram as well as transition temperatures are experimentally well known, the theoretical approaches still face difficulties in contributing a detailed description of these phase transitions. Within this work, a new methodological approach is introduced to revisit the ferroelectric phase transition with first-principles methods. With the chosen ab initio molecular dynamics (AIMD) method in combination with the applied NpT ensemble, we are able to join the accuracy of density functional theory (DFT) with ambient conditions, realized using a thermostat and barostat in an MD simulation. The derived phase diagram confirms recent corrections in the theoretical models and reproduces the phase boundary pressure dependence of TC. In conclusion of the statistical atomistic dynamics, the nature of the transition can be described in a more detailed way. In addition, this work paves the way towards locally patterned piezoelectrica by means of acoustic standing waves as well as piezoelectrically induced acoustic resonators.

18.
Environ Int ; 184: 108481, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38330748

ABSTRACT

Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.


Subject(s)
Air Pollutants , Rats , Animals , Air Pollutants/toxicity , Air Pollutants/analysis , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Biofuels , Inhalation Exposure/adverse effects , Particulate Matter/toxicity , Particulate Matter/analysis , Carbon , Inflammation
19.
Insects ; 15(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38392525

ABSTRACT

Ethiopia has a high potential for the production of honey and other apiary products due to its ideal agroecology. This potential is, however, not yet well utilized due to weak production and valorization systems. The study analyzed beekeeping systems and their honey value chain to detect the barriers and to explore ways to better exploit the existing potential. Descriptive statistics, a SWOT and PESTEL matrix, and system mapping were utilized for analysis. Ethiopian beekeeping is still dominated by traditional production systems, followed by modern and transitional systems, differing in types of beehives and the average amount of honey yield. The combined SWOT-PESTEL analysis revealed challenges like a limited supply and high cost of modern beehives, shortage of credit, absence of a honey marketing legal framework, pest and predator attacks, absconding, and uncontrolled application of agrochemicals. Opportunities include the globally increasing demand for honey, availability of good investment policy, conducive agroecology, and support from NGOs. The less productive techniques of smallholder beekeepers' crude honey production for local beverage making affected the good use of the potential and minimized its contribution to the local and national economy. On the contrary, strengthening private investors and cooperatives towards the production of fully and semi-processed honey impacted the utilization of the potential positively.

20.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320988

ABSTRACT

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioma/genetics , Brain Neoplasms/genetics , Chitinase-3-Like Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL