Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Nature ; 630(8016): 353-359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867127

ABSTRACT

Exoskeletons have enormous potential to improve human locomotive performance1-3. However, their development and broad dissemination are limited by the requirement for lengthy human tests and handcrafted control laws2. Here we show an experiment-free method to learn a versatile control policy in simulation. Our learning-in-simulation framework leverages dynamics-aware musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap between simulation and reality without human experiments. The learned controller is deployed on a custom hip exoskeleton that automatically generates assistance across different activities with reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair climbing, respectively. Our framework may offer a generalizable and scalable strategy for the rapid development and widespread adoption of a variety of assistive robots for both able-bodied and mobility-impaired individuals.


Subject(s)
Computer Simulation , Exoskeleton Device , Hip , Robotics , Humans , Exoskeleton Device/supply & distribution , Exoskeleton Device/trends , Learning , Robotics/instrumentation , Robotics/methods , Running , Walking , Disabled Persons , Self-Help Devices/supply & distribution , Self-Help Devices/trends
SELECTION OF CITATIONS
SEARCH DETAIL