Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
J Am Chem Soc ; 123(42): 10221-38, 2001 Oct 24.
Article in English | MEDLINE | ID: mdl-11603972

ABSTRACT

Organolanthanide complexes of the general type Cp'(2)LnE(TMS)(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Sm, Y, Lu; E = CH, N; TMS = SiMe(3)) serve as effective precatalysts for the rapid intramolecular hydrophosphination/cyclization of the phosphinoalkenes and phosphinoalkynes RHP(CH(2))(n)()CH=CH(2) (R = Ph, H; n = 3, 4) and H(2)P(CH(2))(n)C triple bond C-Ph (n = 3, 4) to afford the corresponding heterocycles and respectively. Kinetic and mechanistic data for these processes exhibit parallels to, as well as distinct differences from, organolanthanide-mediated intramolecular hydroamination/cyclizations. The turnover-limiting step of the present catalytic cycle is insertion of the carbon-carbon unsaturation into the Ln-P bond, followed by rapid protonolysis of the resulting Ln-C linkage. The rate law is first-order in [catalyst] and zero-order in [substrate] over approximately one half-life, with inhibition by heterocyclic product intruding at higher conversions. The catalyst resting state is likely a lanthanocene phosphine-phosphido complex, and dimeric [Cp'(2)YP(H)Ph](2) was isolated and cystallographically characterized. Lanthanide identity and ancillary ligand structure effects on rate and selectivity vary with substrate unsaturation: larger metal ions and more open ligand systems lead to higher turnover frequencies for phosphinoalkynes, and intermediate-sized metal ions with Cp'(2) ligands lead to maximum turnover frequencies for phosphinoalkenes. Diastereoselectivity patterns also vary with substrate, lanthanide ion, and ancillary ligands. Similarities and differences in hydrophosphination vis-à-vis analogous organolanthanide-mediated hydroamination are enumerated.

SELECTION OF CITATIONS
SEARCH DETAIL