Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
J Phys Chem A ; 113(4): 736-49, 2009 Jan 29.
Article in English | MEDLINE | ID: mdl-19123777

ABSTRACT

Bond paths, local energy density properties, and Laplacian, L(r) = -wedge(2)rho(r), composite isosurfaces of the electron density distributions were calculated for the intramolecular and intermolecular bonded interactions for molecular solids of As(2)O(3) and AsO(2) composition, an As(2)O(5) crystal, a number of arsenate molecules, and the arsenic metalloid, arsenolamprite. The directed intermolecular van der Waals As-O, O-O, and As-As bonded interactions are believed to serve as mainstays between the individual molecules in each of the molecular solids. As-O bond paths between the bonded atoms connect Lewis base charge concentrations and Lewis acid charge depletion domains, whereas the O-O and As-As paths connect Lewis base pair and Lewis acid pair domains, respectively, giving rise to sets of intermolecular directed bond paths. The alignment of the directed bond paths results in the periodic structures adopted by the arsenates. The arrangements of the As atoms in the claudetite polymorphs of As(2)O(3) and the As atoms in arsenolamprite are similar. Like the As(2)O(3) polymorphs, arsenolamprite is a molecular solid connected by relatively weak As-As intermolecular directed van der Waals bond paths between the layers of stronger As-As intramolecular bonded interactions. The bond critical point and local energy density properties of the intermolecular As-As bonded interactions in arsenolamprite are comparable with the As-As interactions in claudetite I. As such, the structure of claudetite I can be viewed as a stuffed derivative of the arsenolamprite structure with O atoms between pairs of As atoms comprising the layers of the structure. The cubic structure adopted by the arsenolite polymorph can be understood in terms of sets of directed acid-base As-O and base-base O-O pair domains and bond paths that radiate from the tetrahedral faces of its constituent molecules, serving as face-to-face key-lock mainstays in forming a periodic tetrahedral array of molecules rather than one based on some variant of close packing. The relatively dense structure and the corrugation of the layers in claudetite I can also be understood in terms of directed van der Waals As-O bonded interactions. Our study not only provides a new basis for understanding the crystal chemistry and the structures of the arsenates, but it also calls for a reappraisal of the concept of van der Waals bonded interactions, how the structures of molecular solids are viewed, and how the molecules in these solids are bonded in a periodic structure.

2.
Science ; 322(5902): 724-7, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18974348

ABSTRACT

Studies relating the magnesium (Mg) content of calcified skeletons to temperature often report unexplained deviations from the signature expected for inorganically grown calcite. These "vital effects" are believed to have biological origins, but mechanistic bases for measured offsets remain unclear. We show that a simple hydrophilic peptide, with the same carboxyl-rich character as that of macromolecules isolated from sites of calcification, increases calcite Mg content by up to 3 mole percent. Comparisons to previous studies correlating Mg content of carbonate minerals with temperature show that the Mg enhancement due to peptides results in offsets equivalent to 7 degrees to 14 degrees C. The insights also provide a physical basis for anecdotal evidence that organic chemistry modulates the mineralization of inorganic carbonates and suggest an approach to tuning impurity levels in controlled materials synthesis.


Subject(s)
Calcium Carbonate/chemistry , Magnesium/analysis , Peptides/chemistry , Calcification, Physiologic , Calcium/analysis , Crystallization , Geologic Sediments/chemistry , Microscopy, Atomic Force , Temperature , Thermodynamics
3.
Proc Natl Acad Sci U S A ; 103(51): 19237-42, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17158220

ABSTRACT

The composition of biologic molecules isolated from biominerals suggests that control of mineral growth is linked to biochemical features. Here, we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and their net negative molecular charge and hydrophilicity. The degree of enhancement depends on peptide composition, but not on peptide sequence. Data analysis shows that this rate enhancement arises from an increase in the kinetic coefficient. We interpret the mechanism of growth enhancement to be a catalytic process whereby biomolecules reduce the magnitude of the diffusive barrier, Ek, by perturbations that displace water molecules. The result is a decrease in the energy barrier for attachment of solutes to the solid phase. This previously unrecognized relationship also rationalizes recently reported data showing acceleration of calcite growth rates over rates measured in the pure system by nanomolar levels of abalone nacre proteins. These findings show that the growth-modifying properties of small model peptides may be scaled up to analyze mineralization processes that are mediated by more complex proteins. We suggest that enhancement of calcite growth may now be estimated a priori from the composition of peptide sequences and the calculated values of hydrophilicity and net molecular charge. This insight may contribute to an improved understanding of diverse systems of biomineralization and design of new synthetic growth modulators.


Subject(s)
Calcium Carbonate/chemistry , Crystallization/methods , Peptides/chemistry , Aspartic Acid/chemistry , Catalysis , Kinetics
4.
Nature ; 411(6839): 775-9, 2001 Jun 14.
Article in English | MEDLINE | ID: mdl-11459051

ABSTRACT

Many living organisms contain biominerals and composites with finely tuned properties, reflecting a remarkable level of control over the nucleation, growth and shape of the constituent crystals. Peptides and proteins play an important role in achieving this control. But the general view that organic molecules affect mineralization through stereochemical recognition, where geometrical and chemical constraints dictate their binding to a mineral, seems difficult to reconcile with a mechanistic understanding, where crystallization is controlled by thermodynamic and kinetic factors. Indeed, traditional crystal growth models emphasize the inhibiting effect of so-called 'modifiers' on surface-step growth, rather than stereochemical matching to newly expressed crystal facets. Here we report in situ atomic force microscope observations and molecular modelling studies of calcite growth in the presence of chiral amino acids that reconcile these two seemingly divergent views. We find that enantiomer-specific binding of the amino acids to those surface-step edges that offer the best geometric and chemical fit changes the step-edge free energies, which in turn results in macroscopic crystal shape modifications. Our results emphasize that the mechanism underlying crystal modification through organic molecules is best understood by considering both stereochemical recognition and the effects of binding on the interfacial energies of the growing crystal.


Subject(s)
Amino Acids/chemistry , Calcium Carbonate/chemistry , Aspartic Acid/chemistry , Crystallization , Isomerism , Microscopy, Atomic Force , Molecular Conformation , Spectrum Analysis , Thermodynamics , X-Ray Diffraction
5.
Science ; 290(5494): 1134-7, 2000 Nov 10.
Article in English | MEDLINE | ID: mdl-11073446

ABSTRACT

Magnesium is a key determinant in CaCO3 mineralization; however, macroscopic observations have failed to provide a clear physical understanding of how magnesium modifies carbonate growth. Atomic force microscopy was used to resolve the mechanism of calcite inhibition by magnesium through molecular-scale determination of the thermodynamic and kinetic controls of magnesium on calcite formation. Comparison of directly measured step velocities to standard impurity models demonstrated that enhanced mineral solubility through magnesium incorporation inhibited calcite growth. Terrace width measurements on calcite growth spirals were consistent with a decrease in effective supersaturation due to magnesium incorporation. Ca(1-x)Mg(x)CO3 solubilities determined from microscopic observations of step dynamics can thus be linked to macroscopic measurements.

SELECTION OF CITATIONS
SEARCH DETAIL