Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters








Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125935

ABSTRACT

Reversible regulation of N6-methyladenosine (m6A) methylation of eukaryotic RNA via methyltransferases is an important epigenetic event affecting RNA metabolism. As such, m6A methylation plays crucial roles in regulating animal growth, development, reproduction, and disease progression. Herein, we review the latest research advancements in m6A methylation modifications and discuss regulatory aspects in the context of growth, development, and reproductive traits of livestock. New insights are highlighted and perspectives for the study of m6A methylation modifications in shaping economically important traits are discussed.


Subject(s)
Adenosine , Livestock , Animals , Livestock/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Epigenesis, Genetic , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics
2.
J Steroid Biochem Mol Biol ; 244: 106589, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053701

ABSTRACT

Hepatic oxidative injury induced by free fatty acids (FFA) and metabolic disorders of bile acids (BA) increase the risk of metabolic diseases in dairy cows during perinatal period. However, the effects of FFA on BA metabolism remained poorly understood. In present study, high concentrations of FFA caused cell impairment, oxidative stress and BA overproduction. FFA treatment increased the expression of BA synthesis-related genes [cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7, sterol 12α-hydroxylase, sterol 27-hydroxylase and oxysterol 7α-hydroxylase], whereas reduced BA exportation gene (ATP binding cassette subfamily C member 1) and inhibited farnesoid X receptor/small heterodimer partner (FXR/SHP) pathway in bovine hepatocytes. Knockdown of nuclear receptor subfamily 1 group H member 4 (NR1H4) worsened FFA-caused oxidative damage and BA production, whereas overexpression NR1H4 ameliorated FFA-induced BA production and cell oxidative damage. Besides, reducing BA synthesis through knockdown of CYP7A1 can alleviate oxidative stress and hepatocytes impairment caused by FFA. In summary, these data demonstrated that regulation of FXR/SHP-mediated BA metabolism may be a promising target in improving hepatic oxidative injury of dairy cows during high levels of FFA challenges.

3.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825110

ABSTRACT

Bile acids are cholesterol-derived molecules that are primarily produced in the liver. In nonruminants with fatty liver, overproduction of bile acids is associated with liver injury. During the transition period, fatty liver is a metabolic disorder that can affect up to 50% of high-producing dairy cows. The purpose of this study was to provide a comprehensive evaluation on hepatic bile acid metabolism in dairy cows with fatty liver by assessing expression changes of genes involved in bile acid synthesis, export and uptake. The serum activities of aspartate aminotransferase, alanine aminotransferase and glutamate dehydrogenase and concentration of total bile acids were all greater, whereas serum concentration of total cholesterol was lower in cows with fatty liver than in healthy cows. Content of total bile acids was higher but total cholesterol was slightly lower in liver tissues from fatty liver cows than from healthy cows. The hepatic mRNA abundance of cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 ß- and steroid delta-isomerase 7 (HSD3B7) and sterol 12α-hydroxylase (CYP8B1), enzymes involved in the classic pathway of bile acid synthesis, was higher in fatty liver cows than in healthy cows. Compared with healthy cows, the hepatic mRNA abundance of alternative bile acid synthesis pathway-related genes sterol 27-hydroxylase (CYP27A1) and oxysterol 7α-hydroxylase (CYP7B1) did not differ in cows with fatty liver. The protein and mRNA abundance of bile acid transporter bile salt efflux pump (BSEP) were lower in the liver of dairy cow with fatty liver. Compared with healthy cows, the hepatic mRNA abundance of bile acid transporters solute carrier family 51 subunit α (SLC51A), ATP binding cassette subfamily C member 1 (ABCC1) and 3 (ABCC3) was greater in cows with fatty liver, whereas the solute carrier family 51 subunit ß (SLC51B) did not differ. The expression of genes involved in bile acid uptake, including solute carrier family 10 member 1 (NTCP), solute carrier organic anion transporter family member 1A2 (SLCO1A2) and 2B1 (SLCO2B1) was upregulated in dairy cows with fatty liver. Furthermore, the hepatic protein and mRNA abundance of bile acid metabolism regulators farnesoid X receptor (FXR) and small heterodimer partner (SHP) were lower in cows with fatty liver than in healthy cows. Overall, these data suggest that inhibition of FXR signaling pathway may lead to the increased bile acid synthesis and uptake and decreased secretion of bile acids from hepatocytes to the bile, which elevates hepatic bile acids content in dairy cows with fatty liver. As the hepatotoxicity of bile acids has been demonstrated on nonruminant hepatocytes, it is likely that the liver injury is induced by increased hepatic bile acids content in dairy cows with fatty liver.

4.
J Dairy Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876225

ABSTRACT

Mitochondrial dysfunction has been reported to occur in the mammary gland of dairy cows suffering from ketosis. Prohibitin 2 (PHB2) plays a crucial role in regulating mitophagy, which clears impaired mitochondria to maintain normal mitochondrial function. Therefore, the current study aimed to investigate how PHB2 mediates mitophagy, thereby influencing mitochondrial function in the bovine mammary epithelial cell MAC-T. First, mammary gland tissue and blood samples were collected from healthy cows (control; n = 15, BHB <0.6 mM) and cows with clinical ketosis (CK; n = 15, BHB >3.0 mM). Compared with the control group, the CK group exhibited lower dry matter intake (DMI), milk production, milk protein, milk lactose, and serum glucose. In contrast, milk fat, serum nonesterified fatty acids (NEFA) and BHB were greater in CK group. The protein abundance of PHB2, peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α), mitofusin 2 (MFN2) in whole cell lysates (WCL), as well as PHB2, sequestosome-1 (SQSTM1, also called p62), microtubule-associated protein 1 light chain 3-II (LC3-II), and ubiquitinated proteins in mitochondrial fraction were significantly lower in the CK group. ATP content of mammary gland tissue in CK group was lower than that of healthy cows. Second, MAC-T were cultured and treated with NEFA (0, 0.3, 0.6, 1.2 mM). MAC-T treated with 1.2 mM NEFA displayed decreased protein abundance of PHB2, PGC-1α, MFN2 in WCL, as well as protein abundance of PHB2, p62, LC3-II, and ubiquitinated proteins in mitochondrial fraction. The content of ATP and JC-1 aggregates in 1.2 mM NEFA group were lower than in the 0 mM NEFA group. Additionally, 1.2 mM NEFA disrupted the fusion between mitochondria and lysosomes. MAC-T were then pretreated with 100 nM rapamycin, followed by treatment with or without NEFA. Rapamycin alleviated impaired mitophagy and mitochondria dysfunction induced by 1.2 mM NEFA. Third, MAC-T were transfected with small interfering RNA to silence PHB2 or a plasmid for overexpression of PHB2, followed by treatment with or without NEFA. The silencing of PHB2 aggravated 1.2 mM NEFA induced impaired mitophagy and mitochondrial dysfunction, whereas the overexpression of PHB2 alleviated these effects. Overall, this study provides evidence that PHB2, in regulation of mitophagy, is a mechanism for bovine mammary epithelial cells to counteract NEFA-induced mitochondrial dysfunction.

5.
J Dairy Sci ; 107(6): 4045-4055, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246558

ABSTRACT

During the periparturient period, both oxidative stress, and inflammation of adipose tissue are considered high risk factors for metabolic disorder of dairy cows. Oxidative stress can activate transcription factor nuclear factor kappa B (NF-κB), which lead to the upregulation of genes involved in inflammatory pathways. Thioredoxin-2 (TXN2) is a mitochondrial protein that regulates cellular redox by suppressing mitochondrial reactive oxygen species (ROS) generation in nonruminant, whereas the function of TXN2 in bovine adipocytes was unclear. Thus, the objective of this study was to evaluate how or by which mechanisms TXN2 regulates oxidative stress and NF-κB signaling pathway in bovine adipocytes. Bovine pre-adipocytes isolated from 5 healthy Holstein cows were differentiated and used for (1) treatment with different concentrations of hydrogen peroxide (H2O2; 0, 25, 50, 100, 200, or 400 µM) for 2 h; (2) transfection with or without TXN2 small interfering RNA (si-TXN2) for 48 h and then treated with or without 200 µM H2O2 for 2 h; (3) transfection with scrambled negative control siRNA (si-control) or si-TXN2 for 48 h, and then treatment with or without 10 mM N-acetylcysteine (NAC) for 2 h; (4) transfection with or without TXN2-overexpressing plasmid for 48 h and then treatment with or without 200 µM H2O2 for 2 h. High concentrations of H2O2 (200 and 400 µM) decreased protein and mRNA abundance of TXN2, reduced total antioxidant capacity (T-AOC) and ATP content in adipocytes. Moreover, 200 and 400 µM H2O2 reduced protein abundance of inhibitor of kappa B α (IκBα), increased phosphorylation of NF-κB and upregulated mRNA abundance of tumor necrosis factor-α (TNFA) and interleukin-1B (IL-1B), suggesting that H2O2-induced oxidative stress and activated NF-κB signaling pathway. Silencing of TXN2 increased intracellular ROS content, phosphorylation of NF-κB and mRNA abundance of TNFA and IL-1B, decreased ATP content and protein abundance of IκBα in bovine adipocytes. Knockdown of TXN2 aggravated H2O2-induced oxidative stress and inflammation. In addition, treatment with antioxidant NAC ameliorated oxidative stress and inhibited NF-κB signaling pathway in adipocytes transfected with si-TXN2. In bovine adipocytes treated with H2O2, overexpression of TXN2 reduced the content of ROS and elevated the content of ATP and T-AOC. Overexpression of TXN2 alleviated H2O2-induced inflammatory response in adipocytes, as demonstrated by decreased expression of phosphorylated NF-κB, TNFA, IL-1B, as well as increased expression of IκBα. Furthermore, the protein and mRNA abundance of TXN2 was lower in adipose tissue of dairy cows with clinical ketosis. Overall, our studies contribute to the understanding of the role of TXN2 in adipocyte oxidative stress and inflammatory response.


Subject(s)
Adipocytes , Hydrogen Peroxide , NF-kappa B , Oxidative Stress , Signal Transduction , Thioredoxins , Animals , Cattle , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , NF-kappa B/metabolism , Signal Transduction/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , Reactive Oxygen Species/metabolism , Female
6.
J Dairy Sci ; 107(1): 625-640, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709032

ABSTRACT

Excessive free fatty acid (FFA) oxidation and related metabolism are the major cause of oxidative stress and liver injury in dairy cows during the early postpartum period. In nonruminants, activation of transcription factor EB (TFEB) can improve cell damage and reduce the overproduction of mitochondrial reactive oxygen species. As a downstream target of TFEB, peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α, gene name PPARGC1A) is a critical regulator of oxidative metabolism. Nuciferine (Nuc), a major bioactive compound isolated from the lotus leaf, has been reported to possess hepatoprotective activity. Therefore, the objective of this study was to investigate whether Nuc could protect bovine hepatocytes from FFA-induced lipotoxicity and the underlying mechanisms. A mixture of FFA was diluted in RPMI-1640 basic medium containing 2% low fatty acid bovine serum albumin to treat hepatocytes. Bovine hepatocytes were isolated from newborn calves and treated with various concentrations of FFA mixture (0, 0.3, 0.6, or 1.2 mM) or Nuc (0, 25, 50, or 100 µM), as well as co-treated with 1.2 mM FFA and different concentrations of Nuc. For the experiments of gene silencing, bovine hepatocytes were transfected with small interfering RNA targeted against TFEB or PPARGC1A for 36 h followed by treatment with 1.2 mM FFA for 12 h in presence or absence of 100 µΜ Nuc. The results revealed that FFA treatment decreased protein abundance of nuclear TFEB, cytosolic TFEB, total (t)-TFEB, lysosome-associated membrane protein 1 (LAMP1) and PGC-1α and mRNA abundance of LAMP1, but increased phosphorylated (p)-TFEB. In addition, FFA treatment increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) and decreased the activities of catalase (CAT) and glutathione peroxidase (GSH-Px) in bovine hepatocytes. Moreover, FFA administration enhanced the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactose dehydrogenase (LDH) in the medium of FFA-treated hepatocytes, but reduced the content of urea. In FFA-treated bovine hepatocytes, Nuc administration increased TFEB nuclear localization and the protein abundance of t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, decreased the contents of MDA and H2O2 and the protein abundance of p-TFEB, and enhanced the activities of CAT and GSH-Px in a dose-dependent manner. Consistently, Nuc administration reduced the activities of ALT, AST, and LDH and increased the content of urea in the medium of FFA-treated hepatocytes. Importantly, knockdown of TFEB reduced the protein abundance of p-TFEB, t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, and impeded the beneficial effects of Nuc on FFA-induced oxidative damage in bovine hepatocytes. In addition, PPARGC1A silencing did not alter Nuc-induced nuclear translocation of TFEB, increase of the protein abundance of t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, or decrease of the protein abundance of p-TFEB, whereas it partially reduced the beneficial effects of Nuc on FFA-caused oxidative injury. Taken together, Nuc exerts protective effects against FFA-induced oxidative damage in bovine hepatocytes through activation of the TFEB/PGC-1α signaling pathway.


Subject(s)
Aporphines , Fatty Acids, Nonesterified , PPAR gamma , Female , Cattle , Animals , Fatty Acids, Nonesterified/pharmacology , PPAR gamma/metabolism , Hydrogen Peroxide , Hepatocytes/metabolism , Oxidative Stress , Transcription Factors/genetics , Glutathione Peroxidase/metabolism , RNA, Messenger/metabolism , Urea
7.
J Dairy Sci ; 107(5): 3127-3139, 2024 May.
Article in English | MEDLINE | ID: mdl-37939835

ABSTRACT

During the perinatal period, dairy cows undergo negative energy balance, resulting in elevated circulating levels of nonesterified fatty acids (NEFA). Although increased blood NEFA concentrations are a physiological adaptation of early lactation, excessive NEFA in dairy cows is a major cause of fatty liver. Aberrant lipid metabolism leads to hepatic lipid accumulation and subsequently the development of fatty liver. Both inositol-requiring enzyme 1α (IRE1α) and c-Jun N-terminal kinase (JNK) have been validated for their association with hepatic lipid accumulation, including their regulatory functions in calf hepatocyte insulin resistance, oxidative stress, and apoptosis. Meanwhile, both IRE1α and JNK are involved in lipid metabolism in nonruminants. Therefore, the aim of this study was to investigate how IRE1α and JNK regulate lipid metabolism in bovine hepatocytes. An experiment was conducted on randomly selected 10 healthy cows (hepatic triglyceride [TG] content <1%) and 10 cows with fatty liver (hepatic TG content >5%). Liver tissue and blood samples were collected from experimental cows. Serum concentrations of NEFA and ß-hydroxybutyrate (BHB) were greater, whereas serum concentrations of glucose and milk production were lower in cows with fatty liver. The western blot results revealed that dairy cows with fatty liver had higher phosphorylation levels of JNK, c-Jun, and IRE1α in the liver tissue. Three in vitro experiments were conducted using primary calf hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h, which showed that the phosphorylated levels of JNK, c-Jun, and IRE1α increased in both linear and quadratic effects. In the second experiment, hepatocytes were treated with high concentrations of NEFA (1.2 mM) for 12 h with or without SP600125, a canonical inhibitor of JNK. Western blot results showed that SP600125 treatment could decrease the expression of lipogenesis-associated proteins (PPARγ and SREBP-1c) and increase the expression of fatty acid oxidation (FAO)-associated proteins (CPT1A and PPARα) in NEFA-treated hepatocytes. The perturbed expression of lipogenesis-associated genes (FASN, ACACA, and CD36) and FAO-associated gene ACOX1 were also recovered by JNK inhibition, indicating that JNK reduced excessive NEFA-induced lipogenesis and FAO dysregulation in calf hepatocytes. Third, short hairpin RNA targeting IRE1α (sh-IRE1α) was transfected into calf hepatocytes to silence IRE1α, and KIRA6 was used to inhibit the kinase activity of IRE1α. The blockage of IRE1α could at least partially suppressed NEFA-induced JNK activation. Moreover, the blockage of IRE1α downregulated the expression of lipogenesis genes and upregulated the expression of FAO genes in NEFA-treated hepatocytes. In conclusion, these findings indicate that targeting the IRE1α-JNK axis can reduce NEFA-induced lipid accumulation in bovine hepatocytes by modulating lipogenesis and FAO. This may offer a prospective therapeutic target for fatty liver in dairy cows.

8.
J Dairy Sci ; 107(5): 3269-3279, 2024 May.
Article in English | MEDLINE | ID: mdl-37977448

ABSTRACT

The aim of the present study was to investigate the activity of AMPK and mTORC1 as well as TFEB transcriptional activity and autophagy-lysosomal function in the liver of dairy cows with mild fatty liver (FL) and cows with moderate FL. Liver and blood samples were collected from healthy dairy cows (n = 10; hepatic triglyceride content <1% wet weight) and cows with mild FL (n = 10; 1% ≤ hepatic triglyceride content < 5% wet weight) or moderate FL (n = 10; 5% ≤ hepatic triglyceride content < 10% wet weight) that had a similar number of lactations (median = 3, range = 2-4) and days in milk (median = 6 d, range = 3-9). Blood parameters were determined using a Hitachi 3130 autoanalyzer with commercially available kits. Protein and mRNA abundances were determined using western blotting and quantitative real-time PCR, respectively. Activities of calcineurin and ß-N-acetylglucosaminidase were measured with commercial assay kits. Data were analyzed using one-way ANOVA with subsequent Bonferroni correction. Blood concentrations of glucose were lower in moderate FL cows (3.03 ± 0.21 mM) than in healthy (3.71 ± 0.14 mM) and mild FL cows (3.76 ± 0.14 mM). Blood concentrations of ß-hydroxybutyrate (BHB, 1.37 ± 0.15 mM in mild FL, 1.88 ± 0.17 mM in moderate FL) and free fatty acids (FFA, 0.69 ± 0.05 mM in mild FL, 0.96 ± 0.09 mM in moderate FL) were greater in FL cows than in healthy cows (BHB, 0.76 ± 0.12 mM; FFA, 0.42 ± 0.04 mM). Compared with healthy cows, phosphorylation of AMPK was greater and phosphorylation of its downstream target acetyl-CoA carboxylase 1 was lower in cows with mild and moderate FL. Phosphorylation of mTOR was lower in cows with mild FL compared with healthy cows. In cows with moderate FL, phosphorylation of mTOR and its downstream effectors was greater than in healthy cows and cows with mild FL. The mRNA abundance of TFEB was downregulated in cows with moderate FL compared with healthy cows and mild FL cows. In mild FL cows, the mRNA and protein abundances of TFEB were greater than in healthy cows. Compared with healthy cows, the mRNA abundances of autophagy markers sequestosome-1 and microtubule-associated protein 1 light chain 3-II, and the protein and mRNA abundances of lysosome-associated membrane protein 1 and cathepsin D were increased in mild FL cows but decreased in moderate FL cows. Compared with healthy cows, the mRNA abundance of mucolipin 1 and activities of ß-N-acetylglucosaminidase and calcineurin were higher in cows with mild FL but lower in cows with moderate FL. These data demonstrate that hepatic AMPK signaling pathway, TFEB transcriptional activity, and autophagy-lysosomal function are increased in dairy cows with mild FL; the hepatic mTORC1 signaling pathway is inhibited in mild FL cows but activated in moderate FL cows; and activities of AMPK and TFEB as well as autophagy-lysosomal function are impaired in moderate FL cows.

10.
J Dairy Sci ; 106(10): 7266-7280, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37730176

ABSTRACT

Ketosis is often accompanied by a reduction in milk production in dairy cows, but the molecular mechanism has not been fully elucidated. Ketotic cows possess systemic oxidative stress (OS), which may implicate apoptosis in mammary glands. Sirtuin 3 (SIRT3) is a vital regulator of cellular redox homeostasis and is under the control of AMP-activated protein kinase (AMPK) signaling in nonruminants. Thus, we aimed to investigate (1) the AMPK-SIRT3 and apoptosis status of mammary glands from ketotic cows, (2) the effect of SIRT3 on OS-induced apoptosis in bovine mammary epithelial cells (BMEC), and (3) the role of AMPK signaling on SIRT3-mediated effects on apoptosis. Mammary gland samples were reused from a previous study, which contained healthy and ketotic cows (both n = 15). BMEC were incubated with 0, 0.3, 0.6, or 0.9 mM H2O2 for 6 h with/without a 30 min incubation of an antioxidant MitoQ (1 µM). Then BMEC were incubated with SIRT3 overexpression adenovirus (Ad-SIRT3) for 6 h followed by a 6 h incubation with 0.6 mM H2O2. Finally, BMEC were treated with the AMPK inhibitor Compound C (Cd C,10 µM) for 30 min before the H2O2 challenge, or cells were initially treated with the AMPK agonist MK8722 (10 µM) for 30 min followed by a 30-h culture with/without si-SIRT3 and eventually the H2O2 exposure. Ketotic cows displayed higher levels of Bax, Caspase-3 and Bax/Bcl-2 but lower levels of Bcl-2 in mammary glands. H2O2 incubation displayed similar results, exhibiting a dose-dependent manner between the H2O2 concentration and the apoptosis degree. Mito Q pretreatment reduced cellular reactive oxygen species and rescued cells from apoptosis. Ketotic cows had a lower mammary protein abundance of SIRT3. Similarly, H2O2 incubation downregulated both mRNA and protein levels of SIRT3 in a dose- and time-dependent manner. Ad-SIRT3 infection lowered levels of cellular reactive oxygen species, Bax, Caspase-3 and Bax/Bcl-2 but increased levels of Bcl-2. TUNEL assays confirmed that Ad-SIRT3 infection mitigated H2O2-induced apoptosis. Both ketotic cows and H2O2-induced BMEC had lower levels of p-AMPK and p-AMPK/AMPK. Additionally, Cd C pretreatment decreased SIRT3 and Bcl-2 expression but increased levels of Bax and Caspase-3. Contrary to the inhibitor, MK8722 had opposite effects and reduced the percentage of apoptotic cells. However, these effects of MK8722 were reversed upon SIRT3 silencing. In conclusion, in vivo data confirmed that ketosis is associated with greater apoptosis and restricted AMPK-SIRT3 signaling in mammary glands; in vitro data indicated that SIRT3 mitigates OS-induced apoptosis via AMPK signaling. As such, there may be potential benefits for targeting the AMPK-SIRT3 axis to help counteract the negative effects of mammary glands during ketosis.


Subject(s)
Sirtuin 3 , Female , Cattle , Animals , Caspase 3 , Reactive Oxygen Species , AMP-Activated Protein Kinases , Cadmium , Hydrogen Peroxide , bcl-2-Associated X Protein , Epithelial Cells , Apoptosis , Oxidative Stress
11.
J Dairy Sci ; 106(11): 8005-8016, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641273

ABSTRACT

Dairy cows have high incidence of ketosis during perinatal. According to our previous studies, elevated ketone bodies (mainly ß-hydroxybutyrate, BHB) in the peripheral blood are believed to contribute to the impairment of neutrophils mobility and directionality thereby contributing to the immunosuppression and further infectious disease secondary to ketosis. However, the specific effect of BHB on the directionality of bovine neutrophils needs further study and the underlying molecular mechanisms are still unclear. According to the concentration of serum BHB, 40 multiparous cows (within 3 wk postpartum) were selected and divided into the control (n = 20, BHB <0.6 mM) or clinical ketosis (n = 20, BHB >3.0 mM) group. Blood samples were collected for baseline serum characteristics analysis and neutrophil mobility and directionality detection. Platelet activation factor was used as a chemoattractant in cell migration experiments. Our ex-vivo data showed ketotic cows, compared with control cows, were in a negative energy balance state, and their neutrophils had shorter migration distance, lower migration speed, and impaired migration directionality. Neutrophils from control cows were incubated with 3.0 mM BHB for 6 h in vitro. Similarly, BHB stimulation resulted in impaired mobility and directionality of bovine neutrophils. We further specifically studied the underlying molecular mechanism of BHB regulating neutrophil migration directionality in the present study. Cell division control protein 42 homolog (Cdc42) and Ras-related C3 botulinum toxin substrate 1 (Rac1), 2 key markers in the regulation of migration directionality, were found increased after BHB treatment in their total and activated protein levels while decreasing in their transcription level, suggesting that an imbalance of the protein degradation system may be involved. Interestingly, transmission electron microscopy data revealed a decrease in autophagosome number in neutrophils from ketotic cows. Western blotting data showed the accumulation of sequestosome-1 (p62) protein and a decrease in microtubule-associated protein 1 light chain 3-II (LC3-II) protein abundance after BHB treatment, further confirming that the autophagy flux was inhibited in neutrophils from ketotic cows. Additionally, rapamycin (RAPA), a specific autophagy activator, was used with or without BHB treatment in vitro. Accordingly, the BHB-induced impairment of migration directionality but not mobility was relieved by RAPA. Furthermore, as verified by in vivo experiments, compared with the control cows, the protein abundance of total and activated Cdc42 and Rac1 increased and their mRNA abundance decreased in neutrophils from ketotic cows. Overall, the present study revealed that pathological concentration of BHB impairs neutrophil migration directionality through inhibiting the autophagy-mediated degradation of Cdc42 and Rac1. These findings help explain the immunosuppression caused by ketosis.

12.
J Dairy Sci ; 106(12): 9186-9199, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641277

ABSTRACT

When ketosis occurs, supraphysiological concentrations of nonesterified fatty acids (NEFA) display lipotoxicity and are closely related to the occurrence of hepatic lipid accumulation, oxidative stress, and inflammation, resulting in hepatic damage and exacerbating the progression of ketosis. However, the mechanism of these lipotoxic effects caused by high concentrations of NEFA in ketosis is still unclear. Cluster antigen 36 (CD36), a fatty acid transporter, plays a vital role in the development of hepatic pathological injury in nonruminants. Thus, the aim of this study was to investigate whether CD36 plays a role in NEFA-induced hepatic lipotoxicity in dairy cows with clinical ketosis. Liver tissue and blood samples were collected from healthy (n = 10) and clinically ketotic (n = 10) cows at 3 to 15 d in milk. In addition, hepatocytes isolated from healthy calves were treated with 0, 0.6, 1.2, or 2.4 mM NEFA for 12 h; or infected with CD36 expressing adenovirus or CD36 silencing small interfering RNA for 48 h and then treated with 1.2 mM NEFA for 12 h. Compared with healthy cows, clinically ketotic cows had greater concentrations of serum NEFA and ß-hydroxybutyrate and activities of aspartate aminotransferase and alanine aminotransferase but lower serum glucose. In addition, dairy cows with clinical ketosis displayed excessive hepatic lipid accumulation. More importantly, these alterations were accompanied by an increased abundance of hepatic CD36. In the cell culture model, exogenous NEFA (0, 0.6, 1.2, or 2.4 mM) treatment could dose-dependently increase the abundance of CD36. Meanwhile, NEFA (1.2 mM) increased the content of triacylglycerol, reactive oxygen species and malondialdehyde, and decreased the activities of glutathione peroxidase and superoxide dismutase. Moreover, NEFA upregulated phosphorylation levels of nuclear factor κB (NF-κB) and the inhibitor of NF-κB (IκB) α, along with the upregulation of protein abundance of NLR family pyrin domain containing 3 (NLRP3) and caspase-1, and mRNA abundance of IL1B, IL6, and tumor necrosis factor α (TNFA). These alterations induced by NEFA in bovine hepatocytes were associated with increased lipid accumulation, oxidative stress and inflammation, which could be further aggravated by CD36 overexpression. Conversely, silencing CD36 attenuated these NEFA-induced detriments. Overall, these data suggest that CD36 may be a potential therapeutic target for NEFA-induced hepatic lipid accumulation, oxidative stress, and inflammation in dairy cows.


Subject(s)
Cattle Diseases , Ketosis , Female , Cattle , Animals , Fatty Acids/metabolism , Fatty Acids, Nonesterified , NF-kappa B/metabolism , Hepatocytes/metabolism , Inflammation/veterinary , Inflammation/metabolism , Oxidative Stress , Ketosis/veterinary , 3-Hydroxybutyric Acid , Cattle Diseases/metabolism
13.
J Dairy Sci ; 106(8): 5763-5774, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37268562

ABSTRACT

During the transition period in dairy cows, high circulating concentrations of nonesterified fatty acids (NEFA) increase hepatic lipid deposits and are considered a major pathological factor for liver damage. We investigated whether AdipoRon, a synthetic small-molecule agonist of adiponectin receptors 1 and 2 shown to prevent liver lipid accumulation in nonruminants, could alleviate NEFA-induced lipid accumulation and mitochondrial dysfunction. Bovine hepatocytes were isolated from 5 healthy Holstein female newborn calves (1 d of age, 30-40 kg, fasting), and independently isolated hepatocytes from at least 3 different calves were used for each subsequent experiment. The composition and concentration of NEFA used in this study were selected according to hematological criteria of dairy cows with fatty liver or ketosis. First, hepatocytes were cultured with various concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 12 h. In a second experiment, hepatocytes were treated with AdipoRon at different concentrations (0, 5, 25, or 50 µM for 12 h) and times (25 µM for 0, 6, 12, or 24 h) with or without NEFA (1.2 mM) treatment. In the last experiment, hepatocytes were treated with AdipoRon (25 µM), NEFA (1.2 mM), or both for 12 h after treatment with or without the autophagy inhibitor chloroquine. Hepatocytes treated with NEFA had increased protein abundance of sterol regulatory element-binding protein 1c (SREBP-1c) and mRNA abundance of acetyl-CoA carboxylase 1 (ACACA), and decreased protein abundance of peroxisome proliferator-activated receptor α (PPARA), proliferator-activated receptor gamma coactivator-1 α (PGC-1α), mitofusin 2 (MFN2), cytochrome c oxidase subunit IV (COX IV), and mRNA abundance of carnitine palmitoyltransferase 1A (CPT1A), along with lower ATP concentrations. AdipoRon treatment reversed these effects, suggesting this compound had a positive effect on lipid metabolism and mitochondrial dysfunction during the NEFA challenge. In addition, upregulated expression of microtubule-associated protein 1 light chain 3-II (LC3-II, encoded by MAP1LC3) and downregulated expression of sequestosome-1 (SQSTM1, also called p62) indicated that AdipoRon enhanced autophagic activity in hepatocytes. The fact that chloroquine impeded the beneficial effects of AdipoRon on lipid accumulation and mitochondrial dysfunction suggested a direct role for autophagy during NEFA challenge. Our results suggest that autophagy is an important cellular mechanism to prevent NEFA-induced lipid accumulation and mitochondrial dysfunction in bovine hepatocytes, which is consistent with other studies. Overall, AdipoRon may represent a promising therapeutic agent to maintain hepatic lipid homeostasis and mitochondrial function in dairy cows during the transition period.


Subject(s)
Cattle Diseases , Fatty Liver , Cattle , Animals , Female , Fatty Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Hepatocytes/metabolism , Liver/metabolism , Fatty Liver/veterinary , Lipid Metabolism , Mitochondria/metabolism , Autophagy , RNA, Messenger/metabolism , Cattle Diseases/metabolism
14.
J Dairy Sci ; 106(7): 5182-5195, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37268580

ABSTRACT

Adiponectin (encoded by ADIPOQ) is an adipokine that orchestrates energy homeostasis by modulating glucose and fatty acid metabolism in peripheral tissues. During the periparturient period, dairy cows often develop adipose tissue inflammation and decreased plasma adiponectin levels. Proinflammatory cytokine tumor necrosis factor-α (TNF-α) plays a pivotal role in regulating the endocrine functions of adipocytes, but whether it affects adiponectin production in calf adipocytes remains obscure. Thus, the present study aimed to determine whether TNF-α could affect adiponectin production in calf adipocytes and to identify the underlying mechanism. Adipocytes isolated from Holstein calves were differentiated and used for (1) BODIPY493/503 staining; (2) treatment with 0.1 ng/mL TNF-α for different times (0, 8, 16, 24, or 48 h); (3) transfection with peroxisome proliferator-activated receptor-γ (PPARG) small interfering RNA for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h; and (4) overexpression of PPARG for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h. After differentiation, obvious lipid droplets and secretion of adiponectin were observed in adipocytes. Treatment with TNF-α did not alter mRNA abundance of ADIPOQ but reduced the total and high molecular weight (HMW) adiponectin content in the supernatant of adipocytes. Quantification of mRNA abundance of endoplasmic reticulum (ER)/Golgi resident chaperones involved in adiponectin assembly revealed that ER protein 44 (ERP44), ER oxidoreductase 1α (ERO1A), and disulfide bond-forming oxidoreductase A-like protein (GSTK1) were downregulated in TNF-α-treated adipocytes, while 78-kDa glucose-regulated protein and Golgi-localizing γ-adaptin ear homology domain ARF binding protein-1 were unaltered. Moreover, TNF-α diminished nuclear translocation of PPARγ and downregulated mRNA abundance of PPARG and its downstream target gene fatty acid synthase, suggesting that TNF-α suppressed the transcriptional activity of PPARγ. In the absence of TNF-α, overexpression of PPARG enhanced the total and HMW adiponectin content in supernatant and upregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. However, knockdown of PPARG reduced the total and HMW adiponectin content in supernatant and downregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. In the presence of TNF-α, overexpression of PPARG decreased, while knockdown of PPARG further exacerbated TNF-α-induced reductions in total and HMW adiponectin secretion and gene expression of ERP44, ERO1A, and GSTK1. Overall, TNF-α reduces adiponectin assembly in the calf adipocyte, which may be partly mediated by attenuation of PPARγ transcriptional activity. Thus, locally elevated levels of TNF-α in adipose tissue may be one reason for the decrease in circulating adiponectin in periparturient dairy cows.


Subject(s)
Adiponectin , PPAR gamma , Female , Animals , Cattle , Adiponectin/metabolism , PPAR gamma/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adipocytes/metabolism , Adipose Tissue/metabolism
15.
Acta Pharm Sin B ; 13(4): 1616-1630, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37139424

ABSTRACT

Acetaminophen (APAP) overdose is a major cause of liver injury. Neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerous liver diseases; however, its role in APAP-induced liver injury (AILI) is unclear. Thus, this study aimed to investigate the role of NEDD4-1 in the pathogenesis of AILI. We found that NEDD4-1 was dramatically downregulated in response to APAP treatment in mouse livers and isolated mouse hepatocytes. Hepatocyte-specific NEDD4-1 knockout exacerbated APAP-induced mitochondrial damage and the resultant hepatocyte necrosis and liver injury, while hepatocyte-specific NEDD4-1 overexpression mitigated these pathological events both in vivo and in vitro. Additionally, hepatocyte NEDD4-1 deficiency led to marked accumulation of voltage-dependent anion channel 1 (VDAC1) and increased VDAC1 oligomerization. Furthermore, VDAC1 knockdown alleviated AILI and weakened the exacerbation of AILI caused by hepatocyte NEDD4-1 deficiency. Mechanistically, NEDD4-1 was found to interact with the PPTY motif of VDAC1 through its WW domain and regulate K48-linked ubiquitination and degradation of VDAC1. Our present study indicates that NEDD4-1 is a suppressor of AILI and functions by regulating the degradation of VDAC1.

16.
Autophagy ; 19(8): 2240-2256, 2023 08.
Article in English | MEDLINE | ID: mdl-36779633

ABSTRACT

Acetaminophen (APAP) overdose is the predominant cause of drug-induced liver injury worldwide. The macroautophagy/autophagy-lysosomal pathway (ALP) is involved in the APAP hepatotoxicity. TFEB (transcription factor EB) promotes the expression of genes related to autophagy and lysosomal biogenesis, thus, pharmacological activation of TFEB-mediated ALP may be an effective therapeutic approach for treating APAP-induced liver injury. We aimed to reveal the effects of narirutin (NR), the main bioactive constituents isolated from citrus peels, on APAP hepatotoxicity and to explore its underlying mechanism. Administration of NR enhanced activities of antioxidant enzymes, improved mitochondrial dysfunction and alleviated liver injury in APAP-treated mice, whereas NR did not affect APAP metabolism and MAPK/JNK activation. NR enhanced TFEB transcriptional activity and activated ALP in an MTOR complex 1 (MTORC1)-independent but PPP3/calcineurin-dependent manner. Moreover, knockout of Tfeb or knockdown of PPP3CB/CNA2 (protein phosphatase 3, catalytic subunit, beta isoform) in the liver abolished the beneficial effects of NR on APAP overdose. Mechanistically, NR bound to PPP3CB via PRO31, LYS61 and PRO347 residues and enhanced PPP3/calcineurin activity, thereby eliciting dephosphorylation of TFEB and promoting ALP, which alleviated APAP-induced oxidative stress and liver injury. Together, NR protects against APAP-induced liver injury by activating a PPP3/calcineurin-TFEB-ALP axis, indicating NR may be a potential agent for treating APAP overdose.Abbreviations: ALP: autophagy-lysosomal pathway; APAP: acetaminophen; APAP-AD: APAP-protein adducts; APAP-Cys: acetaminophen-cysteine adducts; CAT: catalase; CETSA: cellular thermal shift assay; CQ: chloroquine; CYP2E1: cytochrome P450, family 2, subfamily e, polypeptide 1; CYCS/Cyt c: cytochrome c, somatic; DARTS: drug affinity responsive target stability assay; ENGASE/NAG: endo-beta-N-acetylglucosaminidase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALT: glutamic pyruvic transaminase, soluble; GSH: glutathione; GPX/GSH-Px: glutathione peroxidase; KD: dissociation constant; Leu: leupeptin; MCOLN1: mucolipin 1; MTORC1: MTOR complex 1; NAC: N-acetylcysteine; NAPQI: N-acetyl-p-benzoquinoneimine; NFAT: nuclear factor of activated T cells; NR: narirutin; OA: okadaic acid; RRAG: Ras related GTP binding; ROS: reactive oxygen species; PPP3CB/CNA2: protein phosphatase 3, catalytic subunit, beta isoform; PPP3R1/CNB1: protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type I); SOD: superoxide dismutase; SPR: surface plasmon resonance analysis; TFEB: transcription factor EB.


Subject(s)
Calcineurin , Chemical and Drug Induced Liver Injury, Chronic , Mice , Animals , Calcineurin/metabolism , Acetaminophen , Autophagy/genetics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Glutathione/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/metabolism
17.
J Agric Food Chem ; 71(1): 443-456, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36573646

ABSTRACT

High blood concentrations of nonesterified fatty acids (NEFAs) provoke various metabolic disorders and are associated with mammary tissue injury and decreased milk production in dairy cows. Nuciferine, an alkaloid found in Nelumbo nucifera leaves, has great potential for correcting lipid metabolism derangements and lipotoxicity. In this study, we evaluated the lipotoxicity induced by excessive NEFA in bovine mammary epithelial cells (bMECs) and investigated whether nuciferine alleviates NEFA-induced lipotoxicity and the underlying molecular mechanisms. We found that excessive NEFA (1.2 and 2.4 mM) induced lipid accumulation, apoptosis, and migration ability impairment in bMECs, whereas nuciferine could ameliorate these disarrangements, as indicated by decreasing triglyceride content, protein abundance of SREBP-1c, cytoplasmic cytochrome c, and cleaved caspase-3 and increasing protein abundance of PPARα and migration ability. Moreover, nuciferine could reverse NEFA-induced LKB1/AMPK signaling inhibition, and the protective effect of nuciferine on lipotoxicity caused by NEFA was abrogated by AMPK inhibitor dorsomorphin. Furthermore, transfection with LKB1 siRNA (si-LKB1) largely abolished the activation effect of nuciferine on AMPK. Overall, nuciferine can protect bMECs from excessive NEFA-induced lipid accumulation, apoptosis, and impaired migration by activating LKB1/AMPK signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , Fatty Acids, Nonesterified , Animals , Cattle , Female , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Apoptosis , Epithelial Cells/metabolism , Fatty Acids, Nonesterified/toxicity , Lipid Metabolism , Signal Transduction , AMP-Activated Protein Kinase Kinases/metabolism
19.
J Dairy Sci ; 105(10): 8426-8438, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35965124

ABSTRACT

Sustained lipolysis and insulin resistance increase the risk of metabolic dysfunction in dairy cows during the transition period. Proinflammatory cytokines are key regulators of adipose tissue metabolism in nonruminants, but biological functions of these molecules in ruminants are not well known. Thus, the objective of this study was to investigate whether tumor necrosis factor-α (TNF-α) could affect insulin sensitivity and lipolysis in bovine adipocytes as well as the underlying mechanisms. Bovine adipocytes (obtained from the omental and mesenteric adipose depots) isolated from 5 Holstein female calves (1 d old) with similar body weight (median: 36.9 kg, range: 35.5-41.2 kg) were differentiated and used for (1) treatment with different concentrations of TNF-α (0, 0.1, 1, or 10 ng/mL) for 12 h; (2) pretreatment with 10 µM lipolytic agonist isoproterenol (ISO) for 3 h, followed by treatment with or without 10 ng/mL TNF-α for 12 h; and (3) pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 (20 µM for 2 h) and nuclear factor kappa B (NF-κB) inhibitor BAY 11-7082 (10 µM for 1 h) followed by treatment with or without 10 ng/mL TNF-α for 12 h. The TNF-α increased glycerol content in supernatant, decreased triglyceride content and insulin-stimulated phosphorylation of protein kinase B suggesting activation of lipolysis and impairment of insulin sensitivity. The TNF-α reduced cell viability, upregulated mRNA abundance of Caspase 3 (CASP3), an apoptosis marker, and increased activity of Caspase 3. In addition, increased phosphorylation of NF-κB and JNK, upregulation of mRNA abundance of interleukin-6 (IL-6), TNFA, and suppressor of cytokine signaling 3 (SOCS3) suggested that TNF-α activated NF-κB and JNK signaling pathways. Furthermore, ISO plus TNF-α-activated NF-κB and JNK signaling pathway to a greater extent than TNF-α alone. Combining TNF-α and ISO aggravated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. In the absence of TNF-α, inhibition of NF-κB and JNK did not alter glycerol content in supernatant, triglyceride content or insulin-stimulated phosphorylation of protein kinase B. In the presence of TNF-α, inhibition of NF-κB and JNK alleviated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. Overall, TNF-α impairs insulin sensitivity and induces lipolysis and apoptosis in bovine adipocytes, which may be partly mediated by activation of NF-κB and JNK. Thus, the data suggested that NF-κB and JNK are potential therapeutic targets for alleviating lipolysis dysregulation and insulin resistance in adipocytes.


Subject(s)
Cattle Diseases , Insulin Resistance , Insulins , Adipocytes/metabolism , Animals , Caspase 3/metabolism , Cattle , Cattle Diseases/metabolism , Female , Glycerol/metabolism , Interleukin-6/metabolism , Isoproterenol/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Lipolysis , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
J Dairy Sci ; 105(10): 8286-8297, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35965126

ABSTRACT

Peripartum dairy cows experience negative energy balance, characterized by high concentrations of blood free fatty acids (FFA) and immune dysfunction. Palmitic acid (PA), the most abundant saturated fatty acid in cow blood, is not only an energy precursor, but causes cellular dysfunction when in excess. Neutrophil extracellular traps (NET) are one of the arsenals of weapons neutrophils use to fight invading pathogens. However, given the marked increase in circulating PA during the peripartum period, it remains to be determined what effect (if any) PA has on NET release. Thus, the objective of this study was to evaluate the effect of PA on NET release and the underlying mechanism in vitro. Phorbol-12-myristate-13-acetate (PMA; 100 ng/mL, 3 h) was used to induce the release of NET in vitro. We isolated neutrophils from the peripheral blood of 5 healthy postpartum dairy cows with similar parity (median = 3, range = 2-4), milk yield (median = 27.84 kg/d per cow, range = 25.79-31.43 kg/d per cow), days in milk (median = 7 d, range = 4-10 d), and serum FFA <0.25 mM, ß-hydroxybutyric acid <0.6 mM, and glucose >3.5 mM. Inhibition of double-stranded DNA (dsDNA) level, a marker of NET release, in response to PA was used to determine an optimal incubation time and concentration for in vitro experiments. Cells were maintained in RPMI-1640 basic medium without phenol red, treated with 600 µM PA for different times (4, 5, 6, and 7 h) in the presence or absence of PMA. There was a decrease for dsDNA level in the supernatant due to increased duration of PA treatment, with a peak response at 6 h. Thus, 6 h was selected as the challenge time. Then, cells were treated with different concentrations of PA (100, 200, 400, and 600 µM) for 6 h in the presence or absence of PMA. There was a decrease for dsDNA level in the supernatant due to increased dose of PA, with a peak response at 400 µM. Finally, 400 µM PA for 6 h was selected as the treatment for subsequent experiments. Protein abundance of citrullinated histone in the presence or absence of PMA was markedly lower in response to incubation with PA. Morphological observations by laser confocal microscopy and scanning electron microscopy showed that the ratio of NET-releasing cells decreased in response to incubation with PA. Autophagy is a potential key intermediate process in the regulation of NET by PA. To investigate the effect of PA on autophagy, we used chloroquine to block lysosomal degradation. Exogenous PA led to accumulation of sequestosome-1 and microtubule-associated protein 1 light chain 3-II, and no further accumulation in the presence of chloroquine, all of which suggested an impairment of autophagic flux. To verify the role of autophagy in NET, we used rapamycin to promote autophagic flux; 100 nM rapamycin attenuated the suppressive effect of PA on NET release indicated by greater dsDNA levels, accumulation of citrullinated histone, and ratio of NET-releasing neutrophils. Overall, these data demonstrate PA inhibits NET release by suppressing autophagic flux, which provides information for understanding the immune dysfunction in postpartum cows.


Subject(s)
Extracellular Traps , 3-Hydroxybutyric Acid/metabolism , Acetates/metabolism , Animals , Cattle , Chloroquine/metabolism , DNA/metabolism , Extracellular Traps/metabolism , Fatty Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Female , Glucose/metabolism , Histones/metabolism , Microtubule-Associated Proteins/metabolism , Neutrophils , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Phenolsulfonphthalein/metabolism , Postpartum Period , Sirolimus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL