Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 959
Filter
1.
Acta Pharmacol Sin ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992118

ABSTRACT

Brain microvascular endothelial cells (BMECs), an important component of the neurovascular unit, can promote angiogenesis and synaptic formation in ischaemic mice after brain parenchyma transplantation. Since the therapeutic efficacy of cell-based therapies depends on the extent of transplanted cell residence in the target tissue and cell migration ability, the delivery route has become a hot research topic. In this study, we investigated the effects of carotid artery transplantation of BMECs on neuronal injury, neurorepair, and neurological dysfunction in rats after cerebral ischaemic attack. Purified passage 1 endothelial cells (P1-BMECs) were prepared from mouse brain tissue. Adult rats were subjected to transient middle cerebral artery occlusion (MCAO) for 30 min. Then, the rats were treated with 5 × 105 P1-BMECs through carotid artery infusion or tail vein injection. We observed that carotid artery transplantation of BMECs produced more potent neuroprotective effects than caudal injection in MCAO rats, including reducing infarct size and alleviating neurological deficits in behavioural tests. Carotid artery-transplanted BMECs displayed a wider distribution in the ischaemic rat brain. Immunostaining for endothelial progenitor cells and the mature endothelial cell markers CD34 and RECA-1 showed that carotid artery transplantation of BMECs significantly increased angiogenesis. Carotid artery transplantation of BMECs significantly increased the number of surviving neurons, decreased the cerebral infarction volume, and alleviated neurological deficits. In addition, we found that carotid artery transplantation of BMECs significantly enhanced ischaemia-induced hippocampal neurogenesis, as measured by doublecortin (DCX) and Ki67 double staining within 2 weeks after ischaemic injury. We conclude that carotid artery transplantation of BMECs can promote cerebral angiogenesis, neurogenesis, and neurological function recovery in adult rats after ischaemic stroke. Our results suggest that carotid injection of BMECs may be a promising new approach for treating acute brain injuries.

2.
Radiat Oncol ; 19(1): 87, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956690

ABSTRACT

BACKGROUND AND PURPOSE: Various deep learning auto-segmentation (DLAS) models have been proposed, some of which have been commercialized. However, the issue of performance degradation is notable when pretrained models are deployed in the clinic. This study aims to enhance precision of a popular commercial DLAS product in rectal cancer radiotherapy by localized fine-tuning, addressing challenges in practicality and generalizability in real-world clinical settings. MATERIALS AND METHODS: A total of 120 Stage II/III mid-low rectal cancer patients were retrospectively enrolled and divided into three datasets: training (n = 60), external validation (ExVal, n = 30), and generalizability evaluation (GenEva, n = 30) datasets respectively. The patients in the training and ExVal dataset were acquired on the same CT simulator, while those in GenEva were on a different CT simulator. The commercial DLAS software was first localized fine-tuned (LFT) for clinical target volume (CTV) and organs-at-risk (OAR) using the training data, and then validated on ExVal and GenEva respectively. Performance evaluation involved comparing the LFT model with the vendor-provided pretrained model (VPM) against ground truth contours, using metrics like Dice similarity coefficient (DSC), 95th Hausdorff distance (95HD), sensitivity and specificity. RESULTS: LFT significantly improved CTV delineation accuracy (p < 0.05) with LFT outperforming VPM in target volume, DSC, 95HD and specificity. Both models exhibited adequate accuracy for bladder and femoral heads, and LFT demonstrated significant enhancement in segmenting the more complex small intestine. We did not identify performance degradation when LFT and VPM models were applied in the GenEva dataset. CONCLUSIONS: The necessity and potential benefits of LFT DLAS towards institution-specific model adaption is underscored. The commercial DLAS software exhibits superior accuracy once localized fine-tuned, and is highly robust to imaging equipment changes.


Subject(s)
Deep Learning , Organs at Risk , Radiotherapy Planning, Computer-Assisted , Rectal Neoplasms , Humans , Rectal Neoplasms/radiotherapy , Rectal Neoplasms/pathology , Organs at Risk/radiation effects , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Female , Male , Middle Aged , Aged , Radiotherapy Dosage , Tomography, X-Ray Computed , Adult , Radiotherapy, Intensity-Modulated/methods
3.
J Phys Chem Lett ; 15(27): 6927-6934, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38935845

ABSTRACT

Two-dimensional materials with layered structures, appropriate band gaps, and high carrier mobility have attracted tremendous interest for their potential applications. Here we report the growth of monolayer SnP3 on Au(111) surfaces by molecular beam epitaxy. The kinetic processes for the growth and the crystalline properties are studied by scanning tunneling microscopy. The weak interaction between SnP3 and its Au(111) substrate is signified by the random crystal orientation distributions of SnP3 nanosheets. The electronic structures exhibit a band gap of ∼0.25 eV and high charge carrier mobility comparable to that of black phosphorus engineered by compressive strain. Additionally, domain boundary junctions with opposite chirality are observed, resulting from the strained film in the epitaxial growth process. Our work provides a method to fabricate high-quality monolayer SnP3 and suggests that the monolayer SnP3 is a promising candidate for applications in nanoelectronics and optoelectronics.

4.
J Hepatocell Carcinoma ; 11: 1171-1183, 2024.
Article in English | MEDLINE | ID: mdl-38911292

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.

5.
Neurosci Bull ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839688

ABSTRACT

Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.

6.
Nat Commun ; 15(1): 4835, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844457

ABSTRACT

Humans produce two forms of cognitively complex vocalizations: speech and song. It is debated whether these differ based primarily on culturally specific, learned features, or if acoustical features can reliably distinguish them. We study the spectro-temporal modulation patterns of vocalizations produced by 369 people living in 21 urban, rural, and small-scale societies across six continents. Specific ranges of spectral and temporal modulations, overlapping within categories and across societies, significantly differentiate speech from song. Machine-learning classification shows that this effect is cross-culturally robust, vocalizations being reliably classified solely from their spectro-temporal features across all 21 societies. Listeners unfamiliar with the cultures classify these vocalizations using similar spectro-temporal cues as the machine learning algorithm. Finally, spectro-temporal features are better able to discriminate song from speech than a broad range of other acoustical variables, suggesting that spectro-temporal modulation-a key feature of auditory neuronal tuning-accounts for a fundamental difference between these categories.


Subject(s)
Machine Learning , Speech , Humans , Speech/physiology , Male , Female , Adult , Acoustics , Cross-Cultural Comparison , Auditory Perception/physiology , Sound Spectrography , Singing/physiology , Music , Middle Aged , Young Adult
7.
Front Oncol ; 14: 1365897, 2024.
Article in English | MEDLINE | ID: mdl-38835389

ABSTRACT

Background: Acute hematologic toxicity (HT) is a prevalent adverse tissue reaction observed in cervical cancer patients undergoing chemoradiotherapy (CRT), which may lead to various negative effects such as compromised therapeutic efficacy and prolonged treatment duration. Accurate prediction of HT occurrence prior to CRT remains challenging. Methods: A discovery dataset comprising 478 continuous cervical cancer patients (140 HT patients) and a validation dataset consisting of 205 patients (52 HT patients) were retrospectively enrolled. Both datasets were categorized into the CRT group and radiotherapy (RT)-alone group based on the treatment regimen, i.e., whether chemotherapy was administered within the focused RT duration. Radiomics features were derived by contouring three regions of interest (ROIs)-bone marrow (BM), femoral head (FH), and clinical target volume (CTV)-on the treatment planning CT images before RT. A comprehensive model combining the radiomics features as well as the demographic, clinical, and dosimetric features was constructed to classify patients exhibiting acute HT symptoms in the CRT group, RT group, and combination group. Furthermore, the time-to-event analysis of the discriminative ROI was performed on all patients with acute HT to understand the HT temporal progression. Results: Among three ROIs, BM exhibited the best performance in classifying acute HT, which was verified across all patient groups in both discovery and validation datasets. Among different patient groups in the discovery dataset, acute HT was more precisely predicted in the CRT group [area under the curve (AUC) = 0.779, 95% CI: 0.657-0.874] than that in the RT-alone (AUC = 0.686, 95% CI: 0.529-0.817) or combination group (AUC = 0.748, 95% CI: 0.655-0.827). The predictive results in the validation dataset similarly coincided with those in the discovery dataset: CRT group (AUC = 0.802, 95% CI: 0.669-0.914), RT-alone group (AUC = 0.737, 95% CI: 0.612-0.862), and combination group (AUC = 0.793, 95% CI: 0.713-0.874). In addition, distinct feature sets were adopted for different patient groups. Moreover, the predicted HT risk of BM was also indicative of the HT temporal progression. Conclusions: HT prediction in cervical patients is dependent on both the treatment regimen and ROI selection, and BM is closely related to the occurrence and progression of HT, especially for CRT patients.

8.
J Med Virol ; 96(6): e29711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847304

ABSTRACT

The emerging evidence of human infections with emerging viruses suggests their potential public health importance. A novel taxon of viruses named Statoviruses (for stool-associated Tombus-like viruses) was recently identified in the gastrointestinal tracts of multiple mammals. Here we report the discovery of respiratory Statovirus-like viruses (provisionally named Restviruses) from the respiratory tracts of five patients experiencing acute respiratory disease with Human coronavirus OC43 infection through the retrospective analysis of meta-transcriptomic data. Restviruses shared 53.1%-98.8% identities of genomic sequences with each other and 39.9%-44.3% identities with Statoviruses. The phylogenetic analysis revealed that Restviruses together with a Stato-like virus from nasal-throat swabs of Vietnamese patients with acute respiratory disease, formed a well-supported clade distinct from the taxon of Statoviruses. However, the consistent genome characteristics of Restviruses and Statoviruses suggested that they might share similar evolutionary trajectories. These findings warrant further studies to elucidate the etiological and epidemiological significance of the emerging Restviruses.


Subject(s)
Genome, Viral , Phylogeny , Respiratory Tract Infections , Humans , China/epidemiology , Genome, Viral/genetics , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Male , Female , Retrospective Studies , Respiratory System/virology , Child, Preschool , Adult , Child , RNA, Viral/genetics , Middle Aged
9.
Small ; : e2402534, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850182

ABSTRACT

In this study, the copper-nickel (Cu-Ni) bimetallic electrocatalysts for electrochemical CO2 reduction reaction(CO2RR) are fabricated by taking the finely designed poly(ionic liquids) (PIL) containing abundant Salen and imidazolium chelating sites as the surficial layer, wherein Cu-Ni, PIL-Cu and PIL-Ni interaction can be readily regulated by different synthetic scheme. As a proof of concept, Cu@Salen-PIL@Ni(NO3)2 and Cu@Salen-PIL(Ni) hybrids differ significantly in the types and distribution of Ni species and Cu species at the surface, thereby delivering distinct Cu-Ni cooperation fashion for the CO2RR. Remarkably, Cu@Salen-PIL@Ni(NO3)2 provides a C2+ faradaic efficiency (FEC2+) of 80.9% with partial current density (jC 2+) of 262.9 mA cm-2 at -0.80 V (versus reversible hydrogen electrode, RHE) in 1 m KOH in a flow cell, while Cu@Salen-PIL(Ni) delivers the optimal FEC2+ of 63.8% at jC2+ of 146.7 mA cm-2 at -0.78 V. Mechanistic studies indicates that the presence of Cu-Ni interfaces in Cu@Salen-PIL@Ni(NO3)2 accounts for the preserve of high-valence Cu(I) species under CO2RR conditions. It results in a high activity of both CO2-to-CO conversion and C-C coupling while inhibition of the competitive HER.

10.
Angew Chem Int Ed Engl ; 63(28): e202319908, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38693057

ABSTRACT

Upon pathogenic stimulation, activated neutrophils release nuclear DNA into the extracellular environment, forming web-like DNA structures known as neutrophil extracellular traps (NETs), which capture and kill bacteria, fungi, and cancer cells. This phenomenon is commonly referred to as NETosis. Inspired by this, we introduce a cell surface-constrained web-like framework nucleic acids traps (FNATs) with programmable extracellular recognition capability and cellular behavior modulation. This approach facilitates dynamic key chemical signaling molecule recognition such as adenosine triphosphate (ATP), which is elevated in the extracellular microenvironment, and triggers FNA self-assembly. This, in turn, leads to in situ tightly interwoven FNAs formation on the cell surface, thereby inhibiting target cell migration. Furthermore, it activates a photosensitizer-capturing switch, chlorin e6 (Ce6), and induces cell self-destruction. This cascade platform provides new potential tools for visualizing dynamic extracellular activities and manipulating cellular behaviors using programmable in situ self-assembling DNA molecular devices.


Subject(s)
Extracellular Traps , Porphyrins , Extracellular Traps/metabolism , Extracellular Traps/chemistry , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , DNA/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Nucleic Acids/chemistry , Chlorophyllides , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Neutrophils/metabolism , Cell Movement/drug effects
12.
J Dig Dis ; 25(4): 238-247, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38779802

ABSTRACT

OBJECTIVES: As a serious complication of moderately severe acute pancreatitis (MSAP) and severe acute pancreatitis (SAP), infected pancreatic necrosis (IPN) can lead to a prolonged course of interventional therapy. Most predictive models designed to identify such patients are complex or lack validation. The aim of this study was to develop a predictive model for the early detection of IPN in MSAP and SAP. METHODS: A total of 594 patients with MSAP or SAP were included in the study. To reduce dimensionality, least absolute shrinkage and selection operator regression analysis was used to screen potential predictive variables, a nomogram was then constructed using logistic regression analysis. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, accuracy, and clinical efficacy of the model. External data were also obtained to further validate the constructed model. RESULTS: There were 476, 118, and 82 patients in the training, internal validation, and external validation cohorts, respectively. Platelet count, hematocrit, albumin/globulin, severity of acute pancreatitis, and modified computed tomography severity index score were independent factors for predicting IPN in MSAP and SAP. The area under the ROC curves were 0.923, 0.940, and 0.817, respectively, in the three groups. There was a good consistency between the actual probabilities and the predicted probabilities. DCA revealed excellent clinical utility. CONCLUSION: The constructed nomogram is a simple and feasible model that has good clinical predictive value and efficacy in clinical decision-making for IPN in MSAP and SAP.


Subject(s)
Nomograms , Pancreatitis, Acute Necrotizing , Severity of Illness Index , Humans , Male , Female , Middle Aged , Pancreatitis, Acute Necrotizing/complications , Pancreatitis, Acute Necrotizing/diagnosis , Adult , ROC Curve , Aged , Predictive Value of Tests , Tomography, X-Ray Computed , Retrospective Studies , Pancreatitis/diagnosis , Pancreatitis/complications
13.
Pharmacol Rev ; 76(3): 414-453, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697854

ABSTRACT

Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.


Subject(s)
Antineoplastic Agents , Neoplasms , Proto-Oncogene Proteins c-mdm2 , Humans , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy
14.
Chin Med ; 19(1): 68, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741130

ABSTRACT

BACKGROUND: Myocarditis refers to an autoimmune inflammatory response of the myocardium with characterization of self-reactive CD4+ T cell activation, which lacks effective treatment and has a poor prognosis. Acacetin is a natural flavonoid product that has been reported to have anti-inflammatory effects. However, acacetin has not been investigated in myocarditis. METHODS: Oral acacetin treatment was administered in an experimental autoimmune myocarditis model established with myosin heavy chain-alpha peptide. Echocardiography, pathological staining, and RT-qPCR were used to detect cardiac function, myocardial injury, and inflammation levels. Flow cytometry was utilized to detect the effect of acacetin on CD4+ T cell function. RNA-seq, molecular docking, and microscale thermophoresis (MST) were employed to investigate potential mechanisms. Seahorse analysis, mitoSOX, JC-1, and mitotracker were utilized to detect the effect of acacetin on mitochondrial function. RESULTS: Acacetin attenuated cardiac injury and fibrosis as well as heart dysfunction, and reduced cardiac inflammatory cytokines and ratio of effector CD4+ T and Th17 cells. Acacetin inhibited CD4+ T cell activation, proliferation, and Th17 cell differentiation. Mechanistically, the effects of acacetin were related to reducing mitochondrial complex II activity thereby inhibiting mitochondrial respiration and mitochondrial reactive oxygen species in CD4+ T cells. CONCLUSION: Acacetin may be a valuable therapeutic drug in treating CD4+ T cell-mediated myocarditis.

15.
Phytochemistry ; 223: 114139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750707

ABSTRACT

Eleven undescribed isoquinoline alkaloids (1-8, 14, 15, and 24), along with 19 analogues (9-13, 16-23, and 25-30) were isolated from the barks of Alangium salviifolium. The structures of the undescribed compounds were elucidated through the analysis of their HR-ESI-MS, 1D and 2D NMR, IR, UV, and X-ray diffraction. The absolute configuration of 8 was established via the ECD calculation. Notably, compounds 1/2 and 3/4 were two pairs of C-14 epimers. The isolated alkaloids were evaluated for their cytotoxicity against various cancer cell lines, including SGC-7901, HeLa, K562, A549, BEL-7402, HepG2, and B16, ß-carboline-benzoquinolizidine (14-22) and cepheline-type (24-28) alkaloids exhibited remarkable cytotoxicity, with IC50 values ranging from 0.01 to 48.12 µM. Remarkably, compounds 17 and 21 demonstrated greater cytotoxicity than the positive control doxorubicin hydrochloride. Furthermore, a significant proportion of these bioactive alkaloids possess a C-1' epimer configuration. The exploration of their structure-activity relationship holds promise for directing future investigations into alkaloids derived from Alangium, potentially leading to novel insights and therapeutic advancements.


Subject(s)
Alkaloids , Antineoplastic Agents, Phytogenic , Drug Screening Assays, Antitumor , Isoquinolines , Plant Bark , Humans , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Plant Bark/chemistry , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor , Alangiaceae/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug
16.
Small ; : e2400267, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805747

ABSTRACT

Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.

17.
Asian J Androl ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38783630

ABSTRACT

ABSTRACT: The aim of this study was to compare the accuracies of cognitive fusion-guided targeted biopsy (TB), systematic biopsy (SB), and combined TB+SB for the detection of prostate cancer (PCa) and clinically significant PCa (csPCa) in males with lesions detected by magnetic resonance imaging (MRI). We conducted a retrospective analysis of individuals who underwent prostate biopsy at Peking University People's Hospital (Beijing, China), with an emphasis on patients with both transrectal TB and SB. The main objective was to determine the precisions of SB, TB, and TB+SB for diagnosing PCa and csPCa. We also evaluated the detection rates of TB, SB, TB+ipsilateral-SB (ipsi-SB), TB+contralateral-SB (contra-SB), and TB+SB for PCa and csPCa in patients with unilateral MRI lesions. We compared the diagnostic yields of the various biopsy schemes using the McNemar's test. A total of 180 patients were enrolled. The rates of PCa detection using TB, SB, and TB+SB were 52.8%, 62.2%, and 66.7%, respectively, and the corresponding rates for csPCa were 46.1%, 56.7%, and 58.3%, respectively. Among patients with unilateral MRI lesions, the PCa detection rates for TB, SB, TB+ipsi-SB, TB+contra-SB, and TB+SB were 53.3%, 64.8%, 65.6%, 61.5%, and 68.0%, respectively. TB+ipsi-SB detected 96.4% of PCa and 95.9% of csPCa cases. These findings suggest that the combination of TB+SB has better diagnostic accuracy compared with SB or TB alone. For patients with unilateral MRI lesions, the combination of TB+ipsi-SB may be suitable in clinical settings.

18.
J Am Chem Soc ; 146(19): 13399-13405, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698691

ABSTRACT

Structural motifs containing nitrogen-nitrogen (N-N) bonds are prevalent in a large number of clinical drugs and bioactive natural products. Hydrazine (N2H4) serves as a widely utilized building block for the preparation of these N-N-containing molecules in organic synthesis. Despite its common use in chemical processes, no enzyme has been identified to catalyze the incorporation of free hydrazine in natural product biosynthesis. Here, we report that a hydrazine transferase catalyzes the condensation of N2H4 and an aromatic polyketide pathway intermediate, leading to the formation of a rare N-aminolactam pharmacophore in the biosynthesis of broad-spectrum antibiotic albofungin. These results expand the current knowledge on the biosynthetic mechanism for natural products with N-N units and should facilitate future development of biocatalysts for the production of N-N-containing chemicals.


Subject(s)
Hydrazines , Hydrazines/chemistry , Hydrazines/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Streptomyces/enzymology , Streptomyces/metabolism , Lactams/chemistry , Lactams/metabolism , Pharmacophore
19.
J Appl Clin Med Phys ; : e14376, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695849

ABSTRACT

PURPOSE: To propose a straightforward and time-efficient quality assurance (QA) approach of beam time delay for respiratory-gated radiotherapy and validate the proposed method on typical respiratory gating systems, Catalyst™ and AlignRT™. METHODS: The QA apparatus was composed of a motion platform and a Winston-Lutz cube phantom (WL3) embedded with metal balls. The apparatus was first scanned in CT-Sim and two types of QA plans specific for beam on and beam off time delay, respectively, were designed. Static reference images and motion testing images of the WL3 cube were acquired with EPID. By comparing the position differences of the embedded metal balls in the motion and reference images, beam time delays were determined. The proposed approach was validated on three linacs with either Catalyst™ or AlignRT™ respiratory gating systems. To investigate the impact of energy and dose rate on beam time delay, a range of QA plans with Eclipse (V15.7) were devised with varying energy and dose rates. RESULTS: For all energies, the beam on time delays in AlignRT™ V6.3.226, AlignRT™ V7.1.1, and Catalyst™ were 92.13 ± $ \pm $ 5.79 ms, 123.11 ± $ \pm $ 6.44 ms, and 303.44 ± $ \pm $ 4.28 ms, respectively. The beam off time delays in AlignRT™ V6.3.226, AlignRT™ V7.1.1, and Catalyst™ were 121.87 ± $ \pm $ 1.34 ms, 119.33 ± $ \pm $ 0.75 ms, and 97.69 ± $ \pm $ 2.02 ms, respectively. Furthermore, the beam on delays decreased slightly as dose rates increased for all gating systems, whereas the beam off delays remained unaffected. CONCLUSIONS: The validation results demonstrate the proposed QA approach of beam time delay for respiratory-gated radiotherapy was both reproducible and time-efficient to practice for institutions to customize accordingly.

20.
Small Methods ; : e2400517, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38763921

ABSTRACT

The defects have a remarkable influence on the electronic structures and the electric transport behaviors of the matter, providing the additional means to engineering their physical properties. In this work, a comprehensive study on the effect of Br-vacancies on the electronic structures and transport behaviors in the high-order topological insulator Bi4Br4 is performed by the combined techniques of the scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and physical properties measurement system along with the first-principle calculations. The STM results show the defects on the cleaved surface of a single crystal and reveal that the defects are correlated to the Br-vacancies with the support of the simulated STM images. The role of the Br-vacancies in the modulation of the band structures has been identified by ARPES spectra and the calculated energy-momentum dispersion. The relationship between the Br-vacancies and the semiconducting-like transport behaviors at low temperature has been established, implying a Mott variable ranging hopping conduction in Bi4Br4. The work not only resolves the unclear transport behaviors in this matter, but also paves a way to modulate the electric conduction path by the defects engineering.

SELECTION OF CITATIONS
SEARCH DETAIL