Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
Ecol Evol ; 14(6): e11499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932976

ABSTRACT

Beyond ecological and health impacts, invasive alien plant species can generate indirect and direct costs, notably through reduced agricultural yields, restoration, and management of the invaded environment. Acacia dealbata and Ailanthus altissima are invasive plant species that cause particularly significant damage to the railway network in the Mediterranean area. The allelopathic properties of Mediterranean plant species could be used as nature-based solutions to slow down the spread of such invasive plant species along railway borders. In this context, a mesocosm experiment was set-up: (i) to test the potential allelopathic effects of Cistus ladanifer, Cistus albidus, and Cotinus coggygria leaf aqueous extracts on seed germination and seedling growth of A. dealbata and A. altissima; (ii) to evaluate whether these effects depend on the extract dose; and finally, (iii) to estimate whether these effects are modified by soil amendment. Leaf aqueous extracts of the three native plant species showed negative effects on both seed germination and seedling growth of the two invasive species. Our results show that the presence of allelochemicals induces a delay in seed germination (e.g., A. dealbata germination lasted up to 269% longer in the presence of high-dose leaf aqueous extracts of C. coggygria), which can lead to a decrease in individual recruitment. They also highlight a decrease in seedling growth (e.g., high-dose C. coggygria leaf aqueous extracts induced a 26% decrease in A. dealbata radicle growth), which can alter the competitiveness of invasive species for resource access. Our results also highlight that compost addition limits the inhibitory effect of native Mediterranean plants on the germination of invasive alien plants, suggesting that soil organic matter content can counteract allelopathic effects on invasive alien plants. Thus, our findings revealed that the allelopathic potential of certain Mediterranean plant species could be a useful tool to manage invasive plant species.

2.
Tree Physiol ; 44(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38676920

ABSTRACT

In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system where trees have been submitted to amplified drought (AD) (~-30% of annual precipitation) since April 2012 and compared them with trees under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs), transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49% drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.


Subject(s)
Droughts , Forests , Plant Leaves , Quercus , Quercus/physiology , Quercus/anatomy & histology , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Rain , Plant Transpiration/physiology , Trees/physiology , Trees/anatomy & histology , Climate Change , Plant Stomata/physiology , Plant Stomata/anatomy & histology
3.
Plants (Basel) ; 11(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235332

ABSTRACT

Mangroves are the only forests located at the sea-land interface in tropical and subtropical regions. They are key elements of tropical coastal ecosystems, providing numerous ecosystem services. Among them is the production of specialized metabolites by mangroves and their potential use in agriculture to limit weed growth in cultures. We explored the in vitro allelopathic potential of eight mangrove species' aqueous leaf extracts (Avicennia marina, Kandelia obovata, Bruguiera gymnorhiza, Sonneratia apetala, Sonneratia caseolaris, Aegiceras corniculatum, Lumnitzera racemosa and Rhizophora stylosa) on the germination and growth of Echinochloa crus-galli, a weed species associated with rice, Oryza sativa. Leaf methanolic extracts of mangrove species were also studied via UHPLC-ESI/qToF to compare their metabolite fingerprints. Our results highlight that A. corniculatum and S. apetala negatively affected E. crus-galli development with a stimulating effect or no effect on O. sativa. Phytochemical investigations of A. corniculatum allowed us to putatively annotate three flavonoids and two saponins. For S. apetala, three flavonoids, a tannin and two unusual sulfated ellagic acid derivatives were found. Some of these compounds are described for the first time in these species. Overall, A. corniculatum and S. apetala leaves are proposed as promising natural alternatives against E. crus-galli and should be further assessed under field conditions.

4.
Plants (Basel) ; 11(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36235447

ABSTRACT

In Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either Quercus ilex, Quercus pubescens, or Pinus halepensis) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions. MS-based metabolomic analysis of litter extracts combined with multivariate data analysis enabled us to detect modifications in the composition of litter specialized metabolites, following amplified drought treatment. Amplified drought altered litter quality and metabolomes, directly slowed down litter decomposition, and induced a loss of home field (dis)advantage. No indirect effect mediated by a change in litter quality on decomposition was observed. These results may suggest major alterations of plant-soil interactions in Mediterranean forests under amplified drought conditions.

5.
Sci Total Environ ; 806(Pt 2): 150696, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34597576

ABSTRACT

Nitrous acid (HONO) photolysis is an important atmospheric reaction that leads to the formation of hydroxyl radicals (OH), the main diurnal atmospheric oxidants. The process of HONO formation remains unclear, and comparisons between field measurements and model results have highlighted the presence of unknown HONO sources. HONO production on plant surfaces was recently suggested to contribute to atmospheric HONO formation, but there is limited information on the quantification of HONO production and uptake by plants. To address this gap in the existing knowledge, the current study investigated HONO exchange on living Zea mays plants. Experiments were conducted in growth chambers under controlled experimental conditions (temperature, relative humidity, NO2 mixing ratio, light intensity, CO2 mixing ratio) at temperatures ranging between 283 and 299 K. To investigate the effect of drought on HONO plant-atmosphere exchanges, experiments were carried out on two sets of Zea mays plants exposed to two different water supply conditions during their growth: optimal watering (70% of the field capacity) and water stress (30% of the field capacity). Results indicated that the uptake of HONO by control Zea mays plants increased linearly with ambient temperature, and was correlated with CO2 assimilation for temperatures ranging from 283 to 299 K. At 299 K, HONO production on the leaves offset this uptake and Zea mays plants were a source of HONO, with a net production rate of 27 ± 7 ppt h-1. Deposition velocities were higher for HONO than CO2, suggesting a higher mesophyll resistance for CO2 than HONO. As water stress reduced the stomatal opening, it also decreased plant-atmosphere gas exchange. Thus, climate change, which may limit the availability of water, will have an impact on HONO exchange between plants and the atmosphere.


Subject(s)
Nitrogen Dioxide , Nitrous Acid , Atmosphere , Hydroxyl Radical , Zea mays
6.
J Environ Qual ; 31(5): 1522-7, 2002.
Article in English | MEDLINE | ID: mdl-12375574

ABSTRACT

Biosolids are applied to vineyards to supply organic matter. However, there is concern that this practice can increase the concentration of macronutrients and heavy metals in the soil, some of which can leach. We evaluated the environmental hazard of sewage sludge compost applied in March 1999 at 10, 30, and 90 Mg ha-1 fresh weight in a vineyard in southeastern France. Soil organic matter increased in all plots by 3 g kg-1 18 mo after the amendment. Neither total nor available heavy metal concentrations increased in the soil. Mineral nitrogen (N) in the topsoil of amended plots of 10, 30, and 90 Mg ha-1 increased by 5, 14, and 26 kg (NO3(-)-N + NH4(+)-N) ha-1, respectively, the first summer and by 2, 5, and 10 kg (NO3(-)-N + NH4(+)-N) ha-1, respectively, the second summer compared with controls. At the recommended rate, risks of N leaching is very low, but phosphorus (P) appeared to be the limiting factor. Phosphorus significantly increased only in plots amended with the highest rate in the topsoil and subsoil. At lower rates, although no significant differences were observed, P added was greater than the quantities absorbed by vines. In the long run, P will accumulate in the soil and may reach concentrations that will pose a risk to surface waters and ground water. Therefore, although the current recommended rate (10 Mg ha-1) increased soil organic matter without the risk of N leaching, total sewage sludge loading rates on vineyards should be based on P concentrations.


Subject(s)
Carbon/analysis , Conservation of Natural Resources , Metals, Heavy/analysis , Nitrogen/analysis , Phosphorus/analysis , Sewage/chemistry , Agriculture , Fertilizers , Risk Assessment , Soil
SELECTION OF CITATIONS
SEARCH DETAIL