Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Sci Transl Med ; 16(751): eadj9672, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865481

ABSTRACT

Cancer treatment with anti-PD-1 immunotherapy can cause central nervous system immune-related adverse events (CNS-irAEs). The role of microglia in anti-PD-1 immunotherapy-induced CNS-irAEs is unclear. We found that anti-PD-1 treatment of mice caused morphological signs of activation and major histocompatibility complex (MHC) class II up-regulation on microglia. Functionally, anti-PD-1 treatment induced neurocognitive deficits in mice, independent of T cells, B cells, and natural killer cells. Instead, we found that microglia mediated these CNS-irAEs. Single-cell RNA sequencing revealed major transcriptional changes in microglia upon anti-PD-1 treatment. The anti-PD-1 effects were mediated by anti-PD-1 antibodies interacting directly with microglia and were not secondary to peripheral T cell activation. Using a proteomics approach, we identified spleen tyrosine kinase (Syk) as a potential target in activated microglia upon anti-PD-1 treatment. Syk inhibition reduced microglia activation and improved neurocognitive function without impairing anti-melanoma effects. Moreover, we analyzed CNS tissue from a patient cohort that had received anti-PD-1 treatment. Imaging mass cytometry revealed that anti-PD-1 treatment of patients was associated with increased surface marker expression indicative of microglia activation. In summary, we identified a disease-promoting role for microglia in CNS-irAEs driven by Syk and provide an inhibitor-based approach to interfere with this complication after anti-PD-1 immunotherapy.


Subject(s)
Central Nervous System , Immunotherapy , Microglia , Programmed Cell Death 1 Receptor , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Immunotherapy/adverse effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Central Nervous System/pathology , Central Nervous System/drug effects , Mice, Inbred C57BL , Syk Kinase/metabolism , Mice
2.
Cancer Res ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885318

ABSTRACT

Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA-sequencing revealed that CALRdel52 led to the expansion of TGF-ß1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGF-ß antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, while T cell depletion abrogated the protective effects conferred by neutralizing TGF-ß. TGF-ß1 reduced perforin and TNF-α production by T cells in vitro. TGF-ß1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGF-ß1 expression. In four independent patient cohorts, TGF-ß1 expression was increased in the BM of MPN patients compared to healthy individuals, and the BM of MPN patients contained a higher frequency of Treg compared to healthy individuals. Together, this study identified an ERK/Sp1/TGF-ß1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity.

3.
J Clin Invest ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916965

ABSTRACT

Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting TIM-3 for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab-treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment-resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ T cells (Tc) enhanced Tc activation, proliferation and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3-treatment-mediated GVL effects are Tc-induced. In contrast to anti-PD-1 and anti-CTLA-4-treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host-disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We deciphered the connection between oncogenic mutations found in AML and TIM-3 ligands expression and identify anti-TIM-3-treatment as a strategy to enhance GVL effects via metabolic and transcriptional Tc-reprogramming, without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Abs in patients with AML relapse post-allo-HCT.

4.
Blood Adv ; 8(11): 2846-2860, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38598725

ABSTRACT

ABSTRACT: The t(1;19) translocation, encoding the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B-cell receptor (preBCR+) phenotype. Relapse in patients with E2A-PBX1+ ALL frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased short hairpin RNA (shRNA) library screening approaches, we identified Bruton tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, the combination of dasatinib with BTK inhibitors (BTKi; ibrutinib, acalabrutinib, or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced phospholipase C gamma 2 (PLCG2) and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, particularly reducing CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse with E2A-PBX1+/preBCR+ ALL across most of performed assays, with the combination of dasatinib and BTKi proving effective in reducing CNS infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Dasatinib , Protein Kinase Inhibitors , Dasatinib/therapeutic use , Dasatinib/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Humans , Animals , Mice , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Central Nervous System Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects
5.
Urol Int ; : 1-9, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626735

ABSTRACT

INTRODUCTION: Personalized medicine poses great opportunities and challenges. While the therapeutic landscape markedly expands, descriptions about status, clinical implementation and real-world benefits of precision oncology and molecular tumor boards (MTB) remain sparse, particularly in the field of genitourinary (GU) cancer. Hence, this study characterized urological MTB cases to better understand the potential role of MTB in uro-oncology. METHODS: We analyzed patients with complete data sets being reviewed at an MTB from January 2019 to October 2022, focusing on results of molecular analysis and treatment recommendations. RESULTS: We evaluated 102 patients with GU cancer with a mean patient age of 61.7 years. Prostate cancer (PCa) was the most frequent entity with 52.9% (54/102), followed by bladder cancer (18.6%, 19/102) and renal cell carcinoma (14.7%, 15/102). On average, case presentation at MTB took place 54.9 months after initial diagnosis and after 2.7 previous lines of therapy. During the study period, 49.0% (50/102) of patients deceased. Additional MTB-based treatment recommendations were achieved in a majority of 68.6% (70/102) of patients, with a recommendation for targeted therapy in 64.3% (45/70) of these patients. Only 6.7% (3/45) of patients - due to different reasons - received the recommended MTB-based therapy though, with 33% (1/3) of patients reaching disease control. Throughout the MTB study period, GU cancer case presentations and treatment recommendations increased, while the time interval between initial presentation and final therapy recommendation were decreasing over time. CONCLUSION: Presentation of uro-oncological patients at the MTB is a highly valuable measure for clinical decision-making. Prospectively, earlier presentation of patients at the MTB and changing legislative issues regarding comprehensive molecular testing and targeted treatment approval might further improve patients' benefits from comprehensive molecular diagnostics.

6.
Ann Hematol ; 103(5): 1613-1622, 2024 May.
Article in English | MEDLINE | ID: mdl-38308707

ABSTRACT

Biomarkers in chronic lymphocytic leukemia (CLL) allow assessment of prognosis. However, the validity of current prognostic biomarkers based on a single assessment point remains unclear for patients who have survived one or more years. Conditional survival (CS) studies that address how prognosis may change over time, especially in prognostic subgroups, are still rare. We performed CS analyses to estimate 5-year survival in 1-year increments, stratified by baseline disease characteristics and known risk factors in two community-based cohorts of CLL patients (Freiburg University Hospital (n = 316) and Augsburg University Hospital (n = 564)) diagnosed between 1984 and 2021. We demonstrate that 5-year CS probability is stable (app. 75%) for the entire CLL patient cohort over 10 years. While age, sex, and stage have no significant impact on CS, patients with high-risk disease features such as non-mutated IGHV, deletion 17p, and high-risk CLL-IPI have a significantly worse prognosis at diagnosis, and 5-year CS steadily decreases with each additional year survived. Our results confirm that CLL patients have a stable survival probability with excess mortality and that the prognosis of high-risk CLL patients declines over time. We infer that CS-based prognostic information is relevant for disease management and counseling of CLL patients.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Prognosis , Biomarkers , Survival Analysis , Mutation
7.
Lancet Haematol ; 11(3): e196-e205, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301670

ABSTRACT

BACKGROUND: Available treatments for older patients with primary diffuse large B-cell CNS lymphoma (PCNSL) offer progression-free survival of up to 16 months. We aimed to investigate an intensified treatment of high-dose chemotherapy and autologous haematopoietic stem-cell transplantation (HSCT) in older patients with PCNSL. METHODS: MARTA was a prospective, single-arm, phase 2 study done at 15 research hospitals in Germany. Patients aged 65 years or older with newly diagnosed, untreated PCNSL were enrolled if they had an Eastern Cooperative Oncology Group performance status of 0-2 and were fit for high-dose chemotherapy and autologous HSCT. Induction treatment consisted of two 21-day cycles of high-dose intravenous methotrexate 3·5 g/m2 (day 1), intravenous cytarabine 2 g/m2 twice daily (days 2 and 3), and intravenous rituximab 375 mg/m2 (days 0 and 4) followed by high-dose chemotherapy with intravenous rituximab 375 mg/m2 (day -8), intravenous busulfan 3·2 mg/kg (days -7 and -6), and intravenous thiotepa 5 mg/kg (days -5 and -4) plus autologous HSCT. The primary endpoint was progression-free survival at 12 months in all patients who met eligibility criteria and started treatment. The study was registered with the German clinical trial registry, DRKS00011932, and recruitment is complete. FINDINGS: Between Nov 28, 2017, and Sept 16, 2020, 54 patients started induction treatment and 51 were included in the full analysis set. Median age was 71 years (IQR 68-75); 27 (53%) patients were female and 24 (47%) were male. At a median follow-up of 23·0 months (IQR 16·8-37·4), 23 (45%) of 51 patients progressed, relapsed, or died. 12-month progression-free survival was 58·8% (80% CI 48·9-68·2; 95% CI 44·1-70·9). During induction treatment, the most common grade 3-5 toxicities were thrombocytopenia and leukopenia (each in 52 [96%] of 54 patients). During high-dose chemotherapy and autologous HSCT, the most common grade 3-5 toxicity was leukopenia (37 [100%] of 37 patients). Treatment-related deaths were reported in three (6%) of 54 patients, all due to infectious complications. INTERPRETATION: Although the primary efficacy threshold was not met, short induction followed by high-dose chemotherapy and autologous HSCT is active in selected older patients with PCNSL and could serve as a benchmark for comparative trials. FUNDING: Else Kröner-Fresenius Foundation, Riemser Pharma, and Medical Center-University of Freiburg.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukopenia , Lymphoma, Large B-Cell, Diffuse , Humans , Female , Male , Aged , Prospective Studies , Rituximab , Lymphoma, Large B-Cell, Diffuse/drug therapy
8.
Sci Transl Med ; 16(735): eadi1501, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381845

ABSTRACT

Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), for which therapeutic options are limited. Strategies to promote intestinal tissue tolerance during aGVHD may improve patient outcomes. Using single-cell RNA sequencing, we identified a lipocalin-2 (LCN2)-expressing neutrophil population in mice with intestinal aGVHD. Transfer of LCN2-overexpressing neutrophils or treatment with recombinant LCN2 reduced aGVHD severity, whereas the lack of epithelial or hematopoietic LCN2 enhanced aGVHD severity and caused microbiome alterations. Mechanistically, LCN2 induced insulin-like growth factor 1 receptor (IGF-1R) signaling in macrophages through the LCN2 receptor SLC22A17, which increased interleukin-10 (IL-10) production and reduced major histocompatibility complex class II (MHCII) expression. Transfer of LCN2-pretreated macrophages reduced aGVHD severity but did not reduce graft-versus-leukemia effects. Furthermore, LCN2 expression correlated with IL-10 expression in intestinal biopsies in multiple cohorts of patients with aGVHD, and LCN2 induced IGF-1R signaling in human macrophages. Collectively, we identified a LCN2-expressing intestinal neutrophil population that reduced aGVHD severity by decreasing MHCII expression and increasing IL-10 production in macrophages. This work provides the foundation for administration of LCN2 as a therapeutic approach for aGVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Animals , Mice , Neutrophils/pathology , Interleukin-10 , Lipocalin-2/genetics , Graft vs Host Disease/genetics , Macrophages/pathology , Acute Disease
9.
Radiother Oncol ; 190: 110048, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070686

ABSTRACT

AIM: The current work aimed to investigate the clinical benefit of radiotherapy in patients with metastatic non-small cell lung cancer (NSCLC) developing acquired resistance to immune checkpoint inhibitors. METHOD: We report on a pooled, two-institution, phase II single-arm prospective cohort study. The study included patients with stage IV NSCLC who showed progression of one or more measurable lesions under anti-PD-(L)1 inhibition alone, after initially having achieved at least stable disease. Hypofractionated radiotherapy (hRT) of one to four metastases was performed, while one or more lesions were kept untreated. Following hRT, treatment with immune checkpoint inhibitors was continued unchanged until further evidence of tumor progression or unacceptable toxicity. Primary endpoint of the pooled analysis was progression-free survival (PFS), secondary endpoints included overall survival (OS) and toxicity. RESULTS: A total of 48 patients were enrolled: mean age was 67.1 ± 9.3 years, 50 % were male and 72.9 % were PD-L1 positive. Immunotherapy was in 95.8 % of patients the first or second line therapy at time of enrollment. hRT was performed to one (93.8 % of cases) or more lesions (median total dose: 27.5 Gy, median 6.5 Gy/fraction). Forty-five patients (93.8 %) were able to continue immunotherapy for a median of 6.2 months following hRT. Median PFS was 4.4 months, with 62.5 % disease control at three months and 37.5 % at six months. Median OS was 14.9 months. Severe adverse events (grade ≥ 2) were reported in 12 cases (25 %), of which none were radiotherapy-related and four were immunotherapy-related. Salvage therapy consisted of chemotherapy (48.8 %) or repeated irradiation (21.9 %). No further tumor treatment was performed in 29.3 % of patients. CONCLUSIONS: The current pooled analysis is a prospective evaluation of the role of radiation therapy for metastatic NSCLC in the setting of newly acquired immunotherapy resistance. Hypofractionated radiotherapy can support the outcome of immune checkpoint inhibitors and thus allow continuation of treatment for a relevant amount of time despite initial tumor progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Male , Middle Aged , Aged , Female , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Immune Checkpoint Inhibitors/adverse effects , Prospective Studies , Immunotherapy/adverse effects , B7-H1 Antigen/metabolism , Clinical Trials, Phase II as Topic
10.
Neuro Oncol ; 26(2): 374-386, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37713267

ABSTRACT

BACKGROUND: Central nervous system lymphomas (CNSL) display remarkable clinical heterogeneity, yet accurate prediction of outcomes remains challenging. The IPCG criteria are widely used in routine practice for the assessment of treatment response. However, the value of the IPCG criteria for ultimate outcome prediction is largely unclear, mainly due to the uncertainty in delineating complete from partial responses during and after treatment. METHODS: We explored various MRI features including semi-automated 3D tumor volume measurements at different disease milestones and their association with survival in 93 CNSL patients undergoing curative-intent treatment. RESULTS: At diagnosis, patients with more than 3 lymphoma lesions, periventricular involvement, and high 3D tumor volumes showed significantly unfavorable PFS and OS. At first interim MRI during treatment, the IPCG criteria failed to discriminate outcomes in responding patients. Therefore, we randomized these patients into training and validation cohorts to investigate whether 3D tumor volumetry could improve outcome prediction. We identified a 3D tumor volume reduction of ≥97% as the optimal threshold for risk stratification (=3D early response, 3D_ER). Applied to the validation cohort, patients achieving 3D_ER had significantly superior outcomes. In multivariate analyses, 3D_ER was independently prognostic of PFS and OS. Finally, we leveraged prognostic information from 3D MRI features and circulating biomarkers to build a composite metric that further improved outcome prediction in CNSL. CONCLUSIONS: We developed semi-automated 3D tumor volume measurements as strong and independent early predictors of clinical outcomes in CNSL patients. These radiologic features could help improve risk stratification and help guide future treatment approaches.


Subject(s)
Central Nervous System Neoplasms , Lymphoma, Non-Hodgkin , Lymphoma , Humans , Tumor Burden , Prognosis , Magnetic Resonance Imaging , Lymphoma/diagnostic imaging , Central Nervous System Neoplasms/diagnostic imaging
11.
Eur J Haematol ; 112(3): 350-359, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37823328

ABSTRACT

Organ dysfunction, including pulmonary function impairment, plays a key role in the choice of conditioning chemotherapy before autologous hematopoietic stem cell transplantation (auto-HSCT). Replacement of BCNU/carmustine as part of BEAM (BCNU/carmustine, etoposide, cytarabine, and melphalan) conditioning protocol by thiotepa (TEAM) reduces pulmonary toxicity while maintaining efficacy. We retrospectively analyzed the association of clinical characteristics, comorbidities, and organ function with outcomes after conditioning with BEAM or TEAM. Three hundred ninety-six patients undergoing auto-HSCT (n = 333 with BEAM; n = 63 with TEAM) at our institution between 2008 and 2021 were included in this study. In the multivariate analysis, CO-diffusion capacity corrected for hemoglobin (DLCOcSB) ≤ 60% of predicted, progressive disease (PD) before auto-HSCT, Karnofsky performance score (KPS) ≤ 80%, HCT-CI score ≥ 4, and cardiac disease before auto-HSCT were associated with decreased overall survival (OS) in patients treated with BEAM. In contrast, only PD before auto-HSCT was identified in patients treated with TEAM. Patients conditioned with BEAM and DLCOcSB ≤ 60% had higher non-relapse mortality, including pulmonary cause of death. In summary, we have identified clinical and pulmonary risk factors associated with worse outcomes in patients conditioned with BEAM compared to TEAM. Our data suggest TEAM conditioning as a valid alternative for patients with comorbidities, including pulmonary dysfunction and/or poorer performance scores, before auto-HSCT.


Subject(s)
Carmustine , Hematopoietic Stem Cell Transplantation , Humans , Carmustine/adverse effects , Thiotepa , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Autologous , Cytarabine/adverse effects , Etoposide/therapeutic use , Transplantation Conditioning/adverse effects , Transplantation Conditioning/methods , Melphalan/adverse effects
12.
Mol Oncol ; 18(2): 415-430, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104968

ABSTRACT

Tyrosine-protein kinase (janus kinase; JAK)-signal transducer and activator of transcription (STAT) signaling plays a pivotal role in the development of myeloproliferative neoplasms (MPNs). Treatment with the potent JAK1/JAK2-specific inhibitor, ruxolitinib, significantly reduces tumor burden; however, ruxolitinib treatment does not fully eradicate the malignant clone. As the molecular basis for the disease persistence is not well understood, we set out to gain new insights by generating ruxolitinib-resistant cell lines. Surprisingly, these cells harbor a 45 kDa JAK2 variant (FERM-JAK2) consisting of the N-terminal FERM domain directly fused to the C-terminal kinase domain in 80% of sublines resistant to ruxolitinib. At the molecular level, FERM-JAK2 is able to directly bind and activate STAT5 in the absence of cytokine receptors. Furthermore, phosphorylation of activation-loop tyrosines is dispensable for FERM-JAK2-mediated STAT5 activation and cellular transformation, in contrast to JAK2-V617F. As a result, FERM-JAK2 is highly resistant to several ATP-competitive JAK2 inhibitors, whereas it is particularly sensitive to HSP90 inhibition. A murine model of FERM-JAK2 leukemogenesis showed an accelerated MPN phenotype with pronounced splenomegaly. Notably, most current protocols for the monitoring of emerging JAK variants are unable to detect FERM-JAK2, highlighting the urgent need for implementing next-generation sequencing approaches in MPN patients receiving ruxolitinib.


Subject(s)
Antineoplastic Agents , STAT5 Transcription Factor , Animals , Humans , Mice , Janus Kinase 2/metabolism , Janus Kinases/metabolism , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism
13.
Blood Cancer J ; 13(1): 179, 2023 12 10.
Article in English | MEDLINE | ID: mdl-38071327

ABSTRACT

Primary induction failure (PIF) in acute myeloid leukemia (AML) patients is associated with poor outcome, with allogeneic hematopoietic stem cell transplantation (HCT) being the sole curative therapeutic option. Here, we retrospectively evaluated long-term outcomes of 220 AML patients undergoing allogeneic HCT after PIF who never achieved remission, and identified clinical and molecular risk factors associated with treatment response and ultimate prognosis. In this high-risk population, disease-free survival was 25.2% after 5 years and 18.7% after 10 years, while overall survival rates were 29.8% and 21.6% after 5 and 10 years of HCT, respectively. 10-year non-relapse mortality was 32.5%, and 48.8% of patients showed disease relapse within 10 years after allogeneic HCT. Adverse molecular risk features determined at initial diagnosis, poor performance status at the time of allogeneic HCT, and long diagnosis-to-HCT intervals were associated with unfavorable prognosis. Collectively, our data suggests that immediate allogeneic HCT after PIF offers long-term survival and cure in a substantial subset of cases and that high-risk AML patients who never achieved complete response during induction might benefit from early donor search.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Remission Induction , Follow-Up Studies , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia, Myeloid, Acute/therapy
14.
Clin Epigenetics ; 15(1): 185, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38012682

ABSTRACT

Elderly patients with AML ineligible for induction have a dismal prognosis; hence disease stabilization is a primary treatment goal. This case of a 75-year-old patient with secondary AML receiving the combination of decitabine and ATRA (within the DECIDER trial, NCT00867672) demonstrates an above-average survival. The therapy administered over 52 cycles led to complete molecular and hematological remission and resulted in 5.3 years overall survival. Clonal evolution of the leukemic clone could be demonstrated using DNA sequencing methods. According to the literature, this case constitutes the longest continued HMA exposure in an elderly AML patient ineligible for standard chemotherapy.


Subject(s)
Leukemia, Myeloid, Acute , Tretinoin , Humans , Aged , Decitabine/pharmacology , Decitabine/therapeutic use , Tretinoin/pharmacology , Tretinoin/therapeutic use , DNA Methylation , Prognosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Treatment Outcome
15.
Br J Haematol ; 203(2): 264-281, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37539479

ABSTRACT

Acute myeloid leukaemia (AML) relapse after allogeneic haematopoietic cell transplantation (allo-HCT) is often driven by immune-related mechanisms and associated with poor prognosis. Immune checkpoint inhibitors combined with hypomethylating agents (HMA) may restore or enhance the graft-versus-leukaemia effect. Still, data about using this combination regimen after allo-HCT are limited. We conducted a prospective, phase II, open-label, single-arm study in which we treated patients with haematological AML relapse after allo-HCT with HMA plus the anti-PD-1 antibody nivolumab. The response was correlated with DNA-, RNA- and protein-based single-cell technology assessments to identify biomarkers associated with therapeutic efficacy. Sixteen patients received a median number of 2 (range 1-7) nivolumab applications. The overall response rate (CR/PR) at day 42 was 25%, and another 25% of the patients achieved stable disease. The median overall survival was 15.6 months. High-parametric cytometry documented a higher frequency of activated (ICOS+ , HLA-DR+ ), low senescence (KLRG1- , CD57- ) CD8+ effector T cells in responders. We confirmed these findings in a preclinical model. Single-cell transcriptomics revealed a pro-inflammatory rewiring of the expression profile of T and myeloid cells in responders. In summary, the study indicates that the post-allo-HCT HMA/nivolumab combination induces anti-AML immune responses in selected patients and could be considered as a bridging approach to a second allo-HCT. Trial-registration: EudraCT-No. 2017-002194-18.

16.
Mol Cancer Res ; 21(8): 849-864, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37071397

ABSTRACT

The treatment of patients with metastatic melanoma with immune checkpoint inhibitors (ICI) leads to impressive response rates but primary and secondary resistance to ICI reduces progression-free survival. Novel strategies that interfere with resistance mechanisms are key to further improve patient outcome during ICI therapy. P53 is often inactivated by mouse-double-minute-2 (MDM2), which may decrease immunogenicity of melanoma cells. We analyzed primary patient-derived melanoma cell lines, performed bulk sequencing analysis of patient-derived melanoma samples, and used melanoma mouse models to investigate the role of MDM2-inhibition for enhanced ICI therapy. We found increased expression of IL15 and MHC-II in murine melanoma cells upon p53 induction by MDM2-inhibition. MDM2-inhibitor induced MHC-II and IL15-production, which was p53 dependent as Tp53 knockdown blocked the effect. Lack of IL15-receptor in hematopoietic cells or IL15 neutralization reduced the MDM2-inhibition/p53-induction-mediated antitumor immunity. P53 induction by MDM2-inhibition caused anti-melanoma immune memory as T cells isolated from MDM2-inhibitor-treated melanoma-bearing mice exhibited anti-melanoma activity in secondary melanoma-bearing mice. In patient-derived melanoma cells p53 induction by MDM2-inhibition increased IL15 and MHC-II. IL15 and CIITA expressions were associated with a more favorable prognosis in patients bearing WT but not TP53-mutated melanoma. IMPLICATIONS: MDM2-inhibition represents a novel strategy to enhance IL15 and MHC-II-production, which disrupts the immunosuppressive tumor microenvironment. On the basis of our findings, a clinical trial combining MDM2-inhibition with anti-PD-1 immunotherapy for metastatic melanoma is planned.


Subject(s)
Antineoplastic Agents , Melanoma , Animals , Mice , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Interleukin-15/metabolism , Interleukin-15/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Microenvironment
17.
Neuropathol Appl Neurobiol ; 49(2): e12899, 2023 04.
Article in English | MEDLINE | ID: mdl-36879456

ABSTRACT

AIMS: How and why lymphoma cells home to the central nervous system and vitreoretinal compartment in primary diffuse large B-cell lymphoma of the central nervous system remain unknown. Our aim was to create an in vivo model to study lymphoma cell tropism to the central nervous system. METHODS: We established a patient-derived central nervous system lymphoma xenograft mouse model and characterised xenografts derived from four primary and four secondary central nervous system lymphoma patients using immunohistochemistry, flow cytometry and nucleic acid sequencing technology. In reimplantation experiments, we analysed dissemination patterns of orthotopic and heterotopic xenografts and performed RNA sequencing of different involved organs to detect differences at the transcriptome level. RESULTS: We found that xenografted primary central nervous system lymphoma cells home to the central nervous system and eye after intrasplenic transplantation, mimicking central nervous system and primary vitreoretinal lymphoma pathology, respectively. Transcriptomic analysis revealed distinct signatures for lymphoma cells in the brain in comparison to the spleen as well as a small overlap of commonly regulated genes in both primary and secondary central nervous system lymphoma. CONCLUSION: This in vivo tumour model preserves key features of primary and secondary central nervous system lymphoma and can be used to explore critical pathways for the central nervous system and retinal tropism with the goal to find new targets for novel therapeutic approaches.


Subject(s)
Central Nervous System Neoplasms , Lymphoma, Large B-Cell, Diffuse , Retinal Neoplasms , Humans , Animals , Mice , Heterografts , Retinal Neoplasms/diagnosis , Retinal Neoplasms/drug therapy , Retinal Neoplasms/pathology , Vitreous Body/metabolism , Vitreous Body/pathology , Central Nervous System Neoplasms/pathology , Central Nervous System/pathology , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Retina/metabolism
18.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36982486

ABSTRACT

BACKGROUND: Mutations in cKIT or PDGFRA are found in up to 90% of patients with gastrointestinal stromal tumors (GISTs). Previously, we described the design, validation, and clinical performance of a digital droplet (dd)PCR assay panel for the detection of imatinib-sensitive cKIT and PDFGRA mutations in circulating tumor (ct)DNA. In this study, we developed and validated a set of ddPCR assays for the detection of cKIT mutations mediating resistance to cKIT kinase inhibitors in ctDNA. In addition, we cross-validated these assays using next generation sequencing (NGS). METHODS: We designed and validated five new ddPCR assays to cover the most frequent cKIT mutations mediating imatinib resistance in GISTs. For the most abundant imatinib-resistance-mediating mutations in exon 17, a drop-off, probe-based assay was designed. Dilution series (of decreasing mutant (MUT) allele frequency spiked into wildtype DNA) were conducted to determine the limit of detection (LoD). Empty controls, single wildtype controls, and samples from healthy individuals were tested to assess specificity and limit of blank (LoB). For clinical validation, we measured cKIT mutations in three patients and validated results using NGS. RESULTS: Technical validation demonstrated good analytical sensitivity, with a LoD ranging between 0.006% and 0.16% and a LoB ranging from 2.5 to 6.7 MUT fragments/mL. When the ddPCR assays were applied to three patients, the abundance of ctDNA in serial plasma samples reflected the individual disease course, detected disease activity, and indicated resistance mutations before imaging indicated progression. Digital droplet PCR showed good correlation to NGS for individual mutations, with a higher sensitivity of detection. CONCLUSIONS: This set of ddPCR assays, together with our previous set of cKIT and PDGFRA mutations assays, allows for dynamic monitoring of cKIT and PDGFRA mutations during treatment. Together with NGS, the GIST ddPCR panel will complement imaging of GISTs for early response evaluation and early detection of relapse, and thus it might facilitate personalized decision-making.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Gastrointestinal Stromal Tumors , Humans , Circulating Tumor DNA/genetics , DNA/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Mutation , Neoplasm Recurrence, Local/genetics , Polymerase Chain Reaction , Proto-Oncogene Proteins c-kit/genetics , Receptor Protein-Tyrosine Kinases/genetics , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics
20.
J Clin Oncol ; 41(9): 1684-1694, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36542815

ABSTRACT

PURPOSE: Clinical outcomes of patients with CNS lymphomas (CNSLs) are remarkably heterogeneous, yet identification of patients at high risk for treatment failure is challenging. Furthermore, CNSL diagnosis often remains unconfirmed because of contraindications for invasive stereotactic biopsies. Therefore, improved biomarkers are needed to better stratify patients into risk groups, predict treatment response, and noninvasively identify CNSL. PATIENTS AND METHODS: We explored the value of circulating tumor DNA (ctDNA) for early outcome prediction, measurable residual disease monitoring, and surgery-free CNSL identification by applying ultrasensitive targeted next-generation sequencing to a total of 306 tumor, plasma, and CSF specimens from 136 patients with brain cancers, including 92 patients with CNSL. RESULTS: Before therapy, ctDNA was detectable in 78% of plasma and 100% of CSF samples. Patients with positive ctDNA in pretreatment plasma had significantly shorter progression-free survival (PFS, P < .0001, log-rank test) and overall survival (OS, P = .0001, log-rank test). In multivariate analyses including established clinical and radiographic risk factors, pretreatment plasma ctDNA concentrations were independently prognostic of clinical outcomes (PFS HR, 1.4; 95% CI, 1.0 to 1.9; P = .03; OS HR, 1.6; 95% CI, 1.1 to 2.2; P = .006). Moreover, measurable residual disease detection by plasma ctDNA monitoring during treatment identified patients with particularly poor prognosis following curative-intent immunochemotherapy (PFS, P = .0002; OS, P = .004, log-rank test). Finally, we developed a proof-of-principle machine learning approach for biopsy-free CNSL identification from ctDNA, showing sensitivities of 59% (CSF) and 25% (plasma) with high positive predictive value. CONCLUSION: We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in CNSL. Our findings highlight the role of ctDNA as a noninvasive biomarker and its potential value for personalized risk stratification and treatment guidance in patients with CNSL.[Media: see text].


Subject(s)
Circulating Tumor DNA , Lymphoma, Non-Hodgkin , Supratentorial Neoplasms , Humans , Circulating Tumor DNA/genetics , Prognosis , Risk Assessment , Brain , Biomarkers, Tumor/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL