Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters








Publication year range
1.
Article in English | MEDLINE | ID: mdl-39099309

ABSTRACT

Triple-negative breast cancer (TNBC) has short survival rates. This study aimed to prepare a novel formula of sorafenib, carbon nanotubes (CNTs), and folic acid to be tested as a drug delivery system targeting versus TNBC compared with free sorafenib and to evaluate the formula stability, in vitro pharmacodynamic, and in vivo pharmacokinetic properties. The formula preparation was done by the synthesis of polyethylene glycol bis amine linker, CNT PEGylation, folic acid attachment, and sorafenib loading. The prepared formula has been characterized using X-ray diffraction, Flourier-transform infrared, 1HNMR, UV, high resolution-transmission electron microscope, field emission scanning electron microscopy, and Zeta potential. In vitro studies included drug release determination, MTT assay, flow cytometry to determine the apoptotic stage with percent, cell cycle analysis, and apoptotic marker assays for caspase-3, 8, 9, cytochrome c, and BCL-2. The in vivo study was performed to determine bioavailability and half-life in rats. The in vitro MTT antiproliferative assay revealed that the formula was threefold more cytotoxic toward TNBC cells than free sorafenib, and the flow cytometry showed a significant increase in apoptosis and necrosis. The formula has a greater inhibitory effect on BCL-2 and a lessening effect on cytochrome c and caspases 3, 8, and 9 than free sorafenib. In vivo experiments proved that our novel formula was superior to free sorafenib by increasing bioavailability by eight times and prolonging the half-life by three times. These results confirmed the successful preparation of the desired formula with better pharmacodynamic and pharmacokinetic properties. These promising results may show a novel therapeutic strategy for TNBC patients.

2.
Nanoscale Adv ; 6(8): 2059-2074, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38633046

ABSTRACT

In this work, a non-precious group metal (non-PGM) electrocatalyst based on transition metals is introduced as a promising solution for enhancing the efficiency of direct methanol fuel cell (DMFC). Nickel-cobalt mixed tungstate was prepared using a simple co-precipitation method with different molar ratios of Ni, Co and W. The prepared materials were tested and validated using different characterization techniques. It was observed using SEM that the materials are agglomerated amorphous random circular nanocomposite structures. The electrochemical performance of the prepared electrocatalysts revealed that the best nanocomposite was the one with the Ni : Co : W ratio of 1 : 1 : 1.5 (W1.5). This composite showed a higher current density of 229 mA cm-2 towards methanol oxidation at a scan rate of 50 mV s-1 in 1 M methanol at 0.6 V, with the lowest onset potential of 0.33 V. The obtained results present a new strong non-PGM material for direct methanol electro-oxidation reactions and open new doors for economic and earth-abundant electrocatalysts as an alternative to expensive commercially available catalysts.

3.
Biosensors (Basel) ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38391996

ABSTRACT

The sensitive determination of folate receptors (FRs) in the early stages of cancer is of great significance for controlling the progression of cancerous cells. Many folic acid (FA)-based electrochemical biosensors have been utilized to detect FRs with promising performances, but most were complicated, non-reproducible, non-biocompatible, and time and cost consuming. Here, we developed an environmentally friendly and sensitive biosensor for FR detection. We proposed an electrochemical impedimetric biosensor formed by nanofibers (NFs) of bio-copolymers prepared by electrospinning. The biosensor combines the advantages of bio-friendly polymers, such as sodium alginate (SA) and polyethylene oxide (PEO) as an antifouling polymer, with FA as a biorecognition element. The NF nanocomposites were characterized using various techniques, including SEM, FTIR, zeta potential (ZP), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). We evaluated the performance of the NF biosensor using EIS and demonstrated FR detection in plasma with a limit of detection of 3 pM. Furthermore, the biosensor showed high selectivity, reliability, and good stability when stored for two months. This biosensor was constructed from 'green credentials' holding polymers that are highly needed in the new paradigm shift in the medical industry.


Subject(s)
Biosensing Techniques , Nanofibers , Neoplasms , Humans , Reproducibility of Results , Electrochemical Techniques/methods , Limit of Detection , Electrodes , Polymers/chemistry , Biosensing Techniques/methods , Neoplasms/diagnosis
4.
BMC Microbiol ; 23(1): 270, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752448

ABSTRACT

BACKGROUND: Water scarcity is now a global challenge due to the population growth and the limited amount of available potable water. In addition, modern industrialization, and microbial pathogenesis is resulting in water pollution on a large scale. METHODS: In the present study, reusable Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix was incorporated with CdS NPs to develop an efficient photocatalyst, and antimicrobial agents for wastewater treatment, and disinfection purpose. The antibacterial performance of the gamma-irradiated samples was evaluated against various types of Gram-positive bacteria using ZOI, MIC, antibiofilm, and effect of UV-exposure. Antibacterial reaction mechanism was assessed by bacterial membrane leakage assay, and SEM imaging. In addition, their photocatalytic efficiency was tested against MB cationic dye as a typical water organic pollutant. RESULTS: Our results showed that, the formed CdS NPs were uniformly distributed onto the surface of the nanocomposite matrix. While, the resulted CdS-based nanocomposite possessed an average particle size of nearly 90.6 nm. The antibacterial performance of the prepared nanocomposite was significantly increased after activation with gamma and UV irradiations. The improved antibacterial performance was mainly due to the synergistic effect of both TiO2 and CdS NPs; whereas, the highest photocatalytic efficiency of MB removal was exhibited in alkaline media due to the electrostatic attraction between the cationic MB and the negatively-charged samples. In addition, the constructed heterojunction enabled better charge separation and increased the lifetime of the photogenerated charge carriers. CONCLUSION: Our results can pave the way towards the development of efficient photocatalysts for wastewater treatment and promising antibacterial agents for disinfection applications.


Subject(s)
Disinfection , Nanocomposites , Disinfection/methods , Silicon Dioxide , Anti-Bacterial Agents/pharmacology , Biofilms
5.
ACS Omega ; 8(23): 20779-20791, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332787

ABSTRACT

Multifunctional nanosized metal-organic frameworks (NMOFs) have advanced rapidly over the past decade to develop drug delivery systems (DDSs). These material systems still lack precise and selective cellular targeting, as well as the fast release of the quantity of drugs that are simply adsorbed within and on the external surface of nanocarriers, which hinders their application in the drug delivery. Herein, we designed a biocompatible Zr-based NMOF with an engineered core and the hepatic tumor-targeting ligand, glycyrrhetinic acid grafted to polyethyleneimine (PEI) as the shell. The improved core-shell serves as a superior nanoplatform for efficient controlled and active delivery of the anticancer drug doxorubicin (DOX) against hepatic cancer cells (HepG2 cells). In addition to their high loading capacity of 23%, the developed nanostructure DOX@NMOF-PEI-GA showed an acidic pH-stimulated response and extended the drug release time to 9 days as well as enhanced the selectivity toward the tumor cells. Interestingly, the DOX-free nanostructures showed a minimal toxic effect on both normal human skin fibroblast (HSF) and hepatic cancer cell line (HepG2), but the DOX-loaded nanostructures exhibited a superior killing effect toward the hepatic tumor, thus opening the way for the active drug delivery and achieving efficient cancer therapy applications.

6.
RSC Adv ; 13(20): 14018-14032, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37181514

ABSTRACT

Water splitting using photoelectrochemical (PEC) techniques is thought to be a potential method for creating green hydrogen as a sustainable energy source. How to create extremely effective electrode materials is a pressing concern in this area. In this work, a series of Nix/TiO2 anodized nanotubes (NTs) and Auy/Nix/TiO2NTs photoanodes were prepared by electrodeposition via cyclic voltammetry and UV-photoreduction, respectively. The photoanodes were characterized by several structural, morphological, and optical techniques and their performance in PEC water-splitting for oxygen evolution reaction (OER) under simulated solar light was investigated. The obtained results revealed the nanotubular structure of TiO2NTs was preserved after deposition of NiO and Au nanoparticles while the band gap energy was reduced allowing for effective utilization of solar light with lower charge recombination rate. The PEC performance was monitored and it was found that the photocurrent densities of Ni20/TiO2NTs and Au30/Ni20/TiO2NTs were 1.75-fold and 3.25-fold that of pristine TiO2NTs, respectively. It was confirmed that the performance of the photoanodes depends on the number of electrodeposition cycles and duration of photoreduction of gold salt solution. The observed enhanced OER activity of Au30/Ni20/TiO2NTs could be attributed to the synergism between the local surface plasmon resonance (LSPR) effect of nanometric gold which increased solar light harvesting and the p-n heterojunction formed at the NiO/TiO2 interface which led to better charge separation and transportation suggesting its potential application as an efficient and stable photoanode in PEC water splitting for H2 production.

7.
Heliyon ; 8(10): e10808, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36203894

ABSTRACT

All inorganic free-lead halide double perovskites are attractive materials in solar energy harvesting applications. In this study, density functional theory calculations have been used to predict the structures, band structures, and density of states of Cs2PtI6 - xBrx with (x = 0, 2, 4, and 6). The optical properties (reflectivity, refractive index, absorption, dielectric function, conductivity, and loss function) of these materials have been predicted and discussed. The band edges calculations showed that the Cs2PtI6 - xBrx may be an efficient visible-light photocatalyst for water splitting and CO2 reduction. The calculated bandgap value of Cs2PtI6 exhibited a great match with the reported experimental values. It has been seen that increasing the doping content of Br- in Cs2PtI6 - xBrx (x = 0, 2, 4, and 6) increases the bandgaps from 1.4 eV to 2.6 eV and can be applied in single junction and tandem solar cells. Using Solar Cell Capacitance Simulator (SCAPS), a 1D device modelling has been performed on Cs2PtI6 inorganic lead-free solar cells. For the fully inorganic device, the effect of replacing organic hole transport materials (HTL) and electron transport materials (ETL) with inorganic ones is investigated while keeping high efficiencies and stabilities of solar cell devices. From the obtained results, it was found that WS2 as ETL and Cu2O as HTL were the most suitable materials compared to the others. Further investigation studies are performed on the effect of changing metal back contact work function, absorber layer thickness, doping density, and defect density on the power conversion efficiency (PCE) of the solar cell. The optimized suggested structure (FTO/WS2/Cs2PtI6/Cu2O/Carbon) obtained a PCE of 17.2% under AM1.5 solar illumination.

8.
RSC Adv ; 12(7): 4199-4208, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35425431

ABSTRACT

The chemical oxygen demand (COD) of water bodies is an essential indicator of organic contaminants. The majority of current testing methods have the drawbacks of requiring multiple processes, being time-consuming, and requiring the use of harmful and hazardous reagents. In this work, a low-cost copper wire (Cu-wire) electrode was designed and fabricated to be used as a sensing electrode for the detection of chemical oxygen demand in water. The sensing features were developed by electrodeposition of copper nanoparticles (nano-Cu) that were prepared by fast-scan cyclic voltammetry (FSCV) deposition at the optimum preparation conditions. For improving the adherence and stability of the deposited nano-Cu thin layer, the Cu-wire electrode was scratched to increase the surface roughness. The surface morphology of the prepared nano-Cu/Cu-wire electrode was investigated by scanning electron microscope (SEM). Energy-dispersive X-ray spectrometer (EDX) was used for elemental analysis characterization. The non-modified and the nano-copper modified electrode were utilized and optimized for electrochemical assay of COD using glycine as a standard in 0.075 M NaOH as an electrolyte solution. The calibration curves (COD, mg L-1 vs. I, mA) were plotted from linear sweep voltammetry (LSV) and chronoamperometry (I-t) curves for a wide range of COD under the optimized conditions. It shows that the electroanalytical features of the proposed nano-Cu-based COD sensor exhibit a linear range from 2 to 595 mg L-1 and a lower limit of detection (LOD) of 2.6 mg L-1 (S/N = 3). The established electrochemical method demonstrated a high tolerance level to Cl- ions where 1.0 M Cl- exhibited a negligible influence. The sensor was employed for detecting the COD in diverse real water samples and the attained results were validated using the standard dichromate method. The obtained results could open the window toward using simple and cost effective tools in order to monitor the water quality.

9.
Sci Rep ; 11(1): 19808, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615960

ABSTRACT

In the last decade, nanosized metal organic frameworks (NMOFs) have gained an increasing applicability as multifunctional nanocarriers for drug delivery in cancer therapy. However, only a limited number of platforms have been reported that can serve as an effective targeted drug delivery system (DDSs). Herein, we report rational design and construction of doxorubicin (DOX)-loaded nanoscale Zr (IV)-based NMOF (NH2-UiO-66) decorated with active tumor targeting moieties; folic acid (FA), lactobionic acid (LA), glycyrrhetinic acid (GA), and dual ligands of LA and GA, as efficient multifunctional DDSs for hepatocellular carcinoma (HCC) therapy. The success of modification was exhaustively validated by various structural, thermal and microscopic techniques. Biocompatibility studies indicated the safety of pristine NH2-UiO-66 against HSF cells whereas DOX-loaded dual-ligated NMOF was found to possess superior cytotoxicity against HepG2 cells which was further confirmed by flow cytometry. Moreover, fluorescence microscopy was used for monitoring cellular uptake in comparison to the non-ligated and mono-ligated NMOF. Additionally, the newly developed dual-ligated NMOF depicted a pH-responsiveness towards the DOX release. These findings open new avenues in designing various NMOF-based DDSs that actively target hepatic cancer to achieve precise therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Doxorubicin/administration & dosage , Drug Carriers/pharmacology , Liver Neoplasms/drug therapy , Metal-Organic Frameworks/pharmacology , Fibroblasts , Hep G2 Cells , Humans
10.
Int J Biol Macromol ; 179: 333-344, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33675834

ABSTRACT

A new strategy regarding the fabrication of chitosan (CS) or ethylene diamine tetraacetic acid (EDTA) on graphene oxide (GO) was performed. The nematocidal potential against Meloidogyne incognita causing root-knot infection in eggplant was tested. The plant immune response was investigated through measuring the photosynthetic pigments, phenols and proline contents, oxidative stress, and antioxidant enzymes activity. Results indicating that, the treatment by pure GO recorded the most mortality percentages of M. incognita 2nd juveniles followed by GO-CS then GO-EDTA. In vivo greenhouse experiments reveals that, the most potent treatment in reducing nematodes was GO-CS which recorded 85.42%, 75.3%, 55.5%, 87.81%, and 81.32% in numbers of 2nd juveniles, galls, females, egg masses and the developmental stage, respectively. The highest chlorophyll a (104%), chlorophyll b (46%), total phenols (137.5%), and free proline (145.2%) were recorded in GO-CS. The highest malondialdehyde (MDA) value was achieved by GO-EDTA (7.22%), and hydrogen peroxide (H2O2) content by 47.51% after the treatment with pure GO. Treatment with GO-CS increased the activities of catalase (CAT) by 98.3%, peroxidase (POD) by 97.52%, polyphenol oxidase (PPO) by 113.8%, and superoxide dismutase (SOD) by 42.43%. The synthesized nanocomposites increases not only the nematocidal activity but also the plant systematic immune response.


Subject(s)
Chitosan/pharmacology , Graphite/pharmacology , Nematoda/drug effects , Plant Diseases , Plant Immunity/drug effects , Solanum melongena , Animals , Edetic Acid , Nematode Infections/immunology , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Roots/immunology , Plant Roots/parasitology , Solanum melongena/immunology , Solanum melongena/parasitology
11.
RSC Adv ; 11(46): 29052-29064, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-35478542

ABSTRACT

To achieve the advanced anticancer activity of nanocomposites fabricated with graphene oxide (GO), a novel procedure was used during the fabrication of chitosan (CS) or ethylene diamine tetra acetic acid (EDTA). The synthesized GO-based nanocomposites were distinguished through different analytical techniques. The cytotoxic activity was examined using MTT assays against three different cancer cell lines. Cell cycle distribution and apoptosis were studied by flow cytometry. Caspase-8, caspase-9, and VEGFR-2 levels were determined using the ELISA technique. HRTEM results revealed a regular 2D thin sheet with a transparent surface in non-modified GO and for GO-CS, the surface of GO has clear cuts and lines had developed due to CS insertion. Concerning the MCF-7 breast cancer cell line, the lowest IC50 values were recorded, suggesting the most powerful cytotoxic effect on breast cancer cells. Treatment with GO-EDTA resulted in the lowest IC50 value of 3.8 ± 0.18 µg mL-1. As indicated by the annexin V-FITC apoptosis assay, the total apoptosis highest percentage was in GO-EDTA treatment (30.12%). In addition, the study of cell cycle analysis showed that GO-EDTA arrested the cell cycle primarily in the G0/G1 phase (33.74%). CS- and EDTA-conjugated GO showed an anti-cancer activity through their cytotoxic effect against the MCF-7 breast cancer cell line.

12.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867259

ABSTRACT

Photoelectrochemical (PEC) water splitting is a promising strategy to improve the efficiency of oxygen evolution reactions (OERs). However, the efficient adsorption of visible light as well as long-term stability of light-harvesting electrocatalysis is the crucial issue in PEC cells. Metal-organic framework (MOF)-derived bimetallic electrocatalysis with its superior performance has wide application prospects in OER and PEC applications. Herein, we have fabricated a nickel and iron bimetallic organic framework (FeNi-MOF) deposited on top of anodized TiO2 nanotube arrays (TNTA) for PEC and OER applications. The FeNi-MOF/TNTA was incorporated through the electrochemical deposition of Ni2+ and Fe3+ onto the surface of TNTA and then connected with organic ligands by the hydrothermal transformation. Therefore, FeNi-MOF/TNTA demonstrates abundant photoelectrocatalytic active sites that can enhance the photocurrent up to 1.91 mA/cm2 under 100 mW/cm2 and a negligible loss in activity after 180 min of photoreaction. The FeNi-MOF-doped photoanode shows predominant photoelectrochemical performance due to the boosted excellent light-harvesting ability, rapid photoresponse, and stimulated interfacial energy of charge separation under the UV-visible light irradiation conditions. The results of this study give deep insight into MOF-derived bimetallic nanomaterial synthesis for photoelectrochemical OER and provide guidance on future electrocatalysis design.

13.
ACS Appl Mater Interfaces ; 12(36): 39979-39990, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32805819

ABSTRACT

Fast and efficient identification of bacterial pathogens in water and biological fluids is an important issue in medical, food safety, and public health concerns that requires low-cost and efficient sensing strategies. Impedimetric sensors are promising tools for monitoring bacteria detection because of their reliability and ease-of-use. We herein report a study on new biointerface-based amphiphilic poly(3-hexylthiophene)-b-poly(3-triethylene-glycol-thiophene), P3HT-b-P3TEGT, for label-free impedimetric detection of Escherichia coli (E. coli). This biointerface is fabricated by the self-assembly of P3HT-b-P3TEGT into core-shell nanoparticles, which was further decorated with mannose, leading to an easy-to-use solution-processable nanoparticle material for biosensing. The hydrophilic block P3TEGT promotes antifouling and prevents nonspecific interactions, while improving the ionic and electronic transport properties, thus enhancing the electrochemical-sensing capability in aqueous solution. Self-assembly and micelle formation of P3HT-b-P3TEGT were analyzed by 2D-NMR, Fourier transform infrared, dynamic light scattering, contact angle, and microscopy characterizations. Detection of E. coli was characterized and evaluated using electrochemical impedance spectroscopy and optical and scanning electron microscopy techniques. The sensing layer based on the mannose-functionalized P3HT-b-P3TEGT nanoparticles demonstrates targeting ability toward E. coli pili protein with a detection range from 103 to 107 cfu/mL, and its selectivity was studied with Gram(+) bacteria. Application to real samples was performed by detection of bacteria in tap and the Nile water. The approach developed here shows that water/alcohol-processable-functionalized conjugated polymer nanoparticles are suitable for use as electrode materials, which have potential application in fabrication of a low-cost, label-free impedimetric biosensor for the detection of bacteria in water.


Subject(s)
Biocompatible Materials/chemistry , Escherichia coli/isolation & purification , Nanoparticles/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Biocompatible Materials/chemical synthesis , Escherichia coli/growth & development , Particle Size , Polymers/chemical synthesis , Surface Properties , Surface-Active Agents/chemical synthesis
14.
Int J Biol Macromol ; 164: 1370-1383, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32735925

ABSTRACT

To obtain the synergistic antimicrobial potential of nano-composites conjugated with graphene oxide (GO), an alternative approach was developed throughout the hybridization of chitosan (CS) or ethylene diamine tetraacetic acid (EDTA) with GO. The synthesized GO-nanocomposites were identified by XRD, HRTEM, SEM, FTIR, Zeta potential, and Raman spectroscopy. The antimicrobial activity of GO, GO-CS, and GO-EDTA was investigated against some pathogenic bacteria and Candida sp. Results showed that nano-composites looked flattened and clear, with some lines and folds on the exterior part. SEM images show the basic morphology of GO which owns remarkable holes, crevasses, and indeclinable internal structure. GO-EDTA and GO-CS possess a promising antimicrobial activity against all pathogenic microbes. In-vitro ZOI result verified that they exhibited activity against Escherichia coli (22.0 mm for GO-EDTA and 11.0 mm for GO-CS), Staphylococcus aureus (15.0 mm for GO-EDTA and 10.0 mm for GO-CS) and Candida albicans (22.0 mm for GO-EDTA and 16.0 mm for GO-CS). Microbial cells may be ultimately-damaged when they interact with GO-based nanocomposites due to different mechanisms such as oxidative and membrane stress and wrapping isolation. This work provides revolutionary GO-nanocomposites for increasing the antimicrobial activity against some pathogenic microbes with a cost-effective and eco-friendly approach.


Subject(s)
Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Candida/drug effects , Microbial Sensitivity Tests , Bacillus subtilis/drug effects , Candida albicans/drug effects , Chitosan/chemistry , Edetic Acid/chemistry , Escherichia coli/drug effects , Graphite/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Oxygen/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Staphylococcus aureus/drug effects , X-Ray Diffraction
15.
Sci Rep ; 10(1): 8607, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32451406

ABSTRACT

Novel multiwalled carbon nanotubes/ Fe-Co doped titanate nanotubes nanocomposite (MWCNTs/Fe-Co doped TNTs) facilitated the charge transfer and enhanced sensitivity and selectivity. Herein, three novel modified carbon paste sensors (CPSs) based on MWCNTs (sensor I), Fe-Co doped TNTs (sensor II) and MWCNTs/Fe-Co doped TNTs composite (sensor III) were fabricated for a simple, low cost and high accuracy electrochemical method for the potentiometric determination of sulpiride (SLP). The sensors exhibited excellent Nernstian slopes 57.1 ± 0.4, 56 ± 0.5 and 58.8 ± 0.2 mV decade-1 with detection limits (DL) 7.6 × 10-7, 1.58 × 10-6 and 8.7 × 10-8 mol L-1, quantification limits (QL) 2.5 × 10-6, 5.2 × 10-6 and 2.9 × 10-7 mol L-1 for a long lifetime 20, 18, and 25 weeks for sensors (I), (II), and (III), respectively. The modified sensor (III) was applicable by measuring the concentration of spiked SLP in pure solutions, pharmaceutical products, human urine, and real water samples. The proposed method can be used as an important analytical tool in the quality control of the pharmaceutical industry.

16.
Environ Sci Pollut Res Int ; 27(16): 18985-19003, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30280341

ABSTRACT

Ni-Al-CO3-layered double hydroxide (LDH) with Ni:Al ratio (3:1) and their nanocomposites with alginate and chitosan beads were prepared and examined for their efficiency in removal of Cd2+ and Cu2+ ions from wastewater. Different parameters such as contact time, pH value, adsorbent weight, and heavy metal ion concentration on the removal efficiency were examined and reported. The prepared beads were examined using X-ray diffraction (XRD), TEM, SEM, and FTIR. Our results revealed a successful preparation of the LDH in rhombohedral hexognal crystal form and the alginate-LDH-chitosan beads. The optimized batch experiment conditions in ambient room temperature were found to be 2 g/L adsorbent dose, 50 mg/L initial concentration of meal, contact time of 2 h, and pH ~ 5 and 6 for removal of Cu2+ and Cd2+, respectively. The adsorption process was well fitted with Langmuir and Freundlich isotherm models (higher R2), with trivial advantage for Freundlich approach. Kinetic studies showed that the adsorption of both Cd2+ and Cu2+ followed the pseudo-second-order. The current study demonstrated that the Ni-Al-CO3 LDH and their novel alginate-chitosan-based nanocomposite could be further tailored and used as efficient adsorbents for the uptake of heavy metals from wastewater.


Subject(s)
Chitosan , Nanocomposites , Water Pollutants, Chemical , Water Purification , Adsorption , Decontamination , Hydrogen-Ion Concentration , Hydroxides , Kinetics , Water
17.
Planta ; 251(1): 16, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31776771

ABSTRACT

MAIN CONCLUSION: We observed a close correlation between the inhibition of photosystem II and the oxidation of polyphenols during an acute oxidative stress in sunflower leaf discs. To assess the physiological significance of polyphenols as antioxidants in planta, we compared the kinetics of polyphenols oxidation with the inhibition of the photosynthetic apparatus in sunflower leaf discs exposed to an acute photooxidative stress. Illumination of leaf discs in the presence of methyl viologen induced a rapid and large non-photochemical quenching of chlorophyll-a fluorescence, which was reversed after 4 h of treatment as indicated by the ≈ 30% increases of the steady-state (Fs) and maximal (Fm') levels of chlorophyll-a fluorescence relative to the first hour of treatment. This event coincided with the accelerated decreases of the maximum (Fv/Fm) and effective (∆F/Fm') quantum yields of photosystem II, and also with the beginning of polyphenols oxidation, estimated by the UV absorbance of methanolic leaf extracts, and supported by the Folin-Ciocalteu method and cyclic voltammetry. The decreases of Fv/Fm and the concentrations of reducing polyphenols were highly correlated (R2 = 0.877) during the experiment. Coherent with the decrease of UV absorbance of methanolic extracts, polyphenol oxidation resulted in a marked decrease of UV absorbance of leaf epidermis. Also, polymerization of oxidized polyphenols caused the accumulation of brown pigments in the MV-treated leaf discs, decreasing leaf reflectance, especially at 550 and 740 nm. Fluorescence intensities were also decreased during the MV treatment. Interestingly, the emission fluorescence ratio F740/F684 (excitation at 550 nm) decreased similarly to Fv/Fm (R2 = 0.981) due to the brown pigments. Moreover, the excitation fluorescence ratio F484/F680 (emission at 740 nm) was linearly correlated (R2 = 0.957) to ∆F/Fm', indicating a decrease of efficiency of energy transfer between the antenna pigments to the photosystem II reaction center during the oxidative stress. These results support the view that polyphenols can be effective antioxidants protecting the plants against reactive oxygen species.


Subject(s)
Polyphenols/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Photosystem II Protein Complex/metabolism
18.
Sci Rep ; 9(1): 11548, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31383915

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Mater Sci Eng C Mater Biol Appl ; 100: 186-195, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30948052

ABSTRACT

Nowadays, development of highly efficient potentiometric sensors attracts the attention of many researchers over the world; due to the great expansion of portable analytical devices. This study aims to apply a current development to the construction and sense of carbon paste sensors based on flowered-like Mg-Al layered double hydroxides/multiwalled carbon nanotubes (FLLDH/MWCNTs) (sensor І), FLLDH/titanate nanotubes (TNTs) (sensor ІІ) and MWCNTs/TNTs (sensor ІІІ) nanocomposites for bambuterol hydrochloride analysis; to enhance the potentiometric response towards determination of the drug. The sensors exhibited excellent Nernstian slopes 58.8 ±â€¯0.5, 58.5 ±â€¯0.8 and 57.4 ±â€¯0.7 mV/decade with linear working ranges of 1.0 × 10-7-1.0 × 10-2, 1.0 × 10-6-1.0 × 10-2 and 1.0 × 10-7-1.0 × 10-2 mol L-1, detection limits 2.3 × 10-8, 2.5 × 10-7and 7.5 × 10-8 mol L-1 and quantification limits of 7.6 × 10-8, 8.3 × 10-7and 2.5 × 10-7 mol L-1 for sensor І, ІІ and ІІІ, respectively. The selectivity behaviour of the investigated sensors was tested against biologically important blood electrolytes (Na+, K+, Mg2+, Ca2+). The proposed analytical method was successfully applied for BAM determination in pure drug, pharmaceutical products, surface water, human plasma and urine samples with excellent recovery data (99.62, 99.10 and 98.95%) for the three sensors, respectively.


Subject(s)
Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Potentiometry , Terbutaline/analogs & derivatives , Aluminum/chemistry , Fresh Water/chemistry , Humans , Hydrogen-Ion Concentration , Hydroxides/chemistry , Limit of Detection , Magnesium/chemistry , Terbutaline/analysis , Terbutaline/blood , Terbutaline/urine
20.
RSC Adv ; 9(24): 13503-13514, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-35519556

ABSTRACT

In this work, efficient methanol oxidation fuel cell catalysts with excellent stability in alkaline media have been synthesized by including transition metals to the layered double hydroxide (LDH) nanohybrids. The nanohybrids CoCr-LDH, NiCoCr-LDH and NiCr-LDH were prepared by co-precipitation and their physicochemical characteristics were investigated using TEM, XRD, IR and BET analyses. The nanohybrid CoCr-LDH is found to have the highest surface area of 179.87 m2 g-1. The electrocatalytic activity measurements showed that the current density was increased by increasing the methanol concentration (from 0.1 to 3 M) as a result of its increased oxidation at the surface. The nanohybrid NiCr-LDH, showing the highest pore size (55.5 Å) showed the highest performance for methanol oxidation, with a current density of 7.02 mA cm-2 at 60 mV s-1 using 3 M methanol. In addition, the corresponding onset potential was 0.35 V (at 60 mV s-1 using 3 M methanol) which is the lowest value among all other used LDH nanohybrids. Overall, we observed the following reactivity order: NiCr-LDH > NiCoCr-LDH > CoCr-LDH, as derived from the impedance spectroscopy analysis.

SELECTION OF CITATIONS
SEARCH DETAIL