Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
Org Biomol Chem ; 22(34): 6860-6904, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39136141

ABSTRACT

Organofluorines have a broad range of industrial applications, such as pharmaceuticals, liquid crystal displays (LCDs), solar cells, textiles, and construction coatings, and are used in peptidomimetics, surfactants, refrigerants, anesthetics, and agrochemicals. Among them are versatile monofluoroalkenes that play a crucial role in medicinal and synthetic chemistry. The synthetic strategies for this class of molecules are limited, and prior efforts frequently suffered from poor atom- and step-economies. As a surrogate pathway for traditional cross-coupling transformations, transition metal (TM)-catalyzed C-H direct α-fluoroalkenylation overcomes these obstacles and provides straightforward techniques to access monofluoroalkenes. Nevertheless, substrate scope is still a challenge for catalysis, where gem-bromofluoroalkene synthons are applicable with electronically biased substrates such as azoles, while gem-difluoroalkene-based strategies are limited to substrates containing N-based directing groups. Herein, we review the cutting-edge fluoroalkenylation research for direct synthesis of monofluoroalkenes achieved during the last decade (2013-2023). This review is divided into two main parts: the first part discusses TM-catalyzed direct α-fluoroalkenylation via the merging of C-H activation and C(sp2)-Br cleavage strategies using gem-bromofluoroalkenes, and the second part describes the same reaction, albeit with C(sp2)-F cleavage of highly explored gem-difluoroolefins. Our review surveys all previously reported monofluoroalkenes in this research area, including their preparation techniques, stereoselectivity, and yield percentages. Furthermore, optimal conditions, reactant scope, mechanistic investigations, synthetic applications, benefits, and drawbacks of each presented methodology are critically discussed.

2.
Future Med Chem ; 16(12): 1219-1237, 2024.
Article in English | MEDLINE | ID: mdl-38989988

ABSTRACT

Aim: Novel thiazole hybrids were synthesized via thiazolation of 4-phenylthiosemicarbazone (4). Materials & methods: The anticancer activity against the NCI 60 cancer cell line panel. Results: Methyl 2-(2-((1-(naphthalen-2-yl)ethylidene)hydrazineylidene)-4-oxo-3-phenylthiazolidin-5-ylidene)acetate (6a) showed significant anticancer activity at 10 µM with a mean growth inhibition (GI) of 51.18%. It showed the highest cytotoxic activity against the ovarian cancer OVCAR-4 with an IC50 of 1.569 ± 0.06 µM. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 µM. Moreover, compound 6a revealed a decrease of Akt and mTOR phosphorylation in OVCAR-4 cells. In addition, antibacterial activity showed that compounds 11 and 12 were the most active against Staphylococcus aureus. Conclusion: Compound 6a is a promising molecule that could be a lead candidate for further studies.


Novel naphthalene-azine-thiazole hybrids 5-12 were synthesized via late-stage thiazolation of the corresponding 4-phenylthiosemicarbazone 4. Compound 6a showed significant anticancer activity at single-dose screening and yielded excellent inhibitory activity with a mean GI of 51.18%. Compound 6a showed the highest cytotoxic activity against OVCAR-4 with an IC50 of 1.569 ± 0.06 µM. Moreover, compound 6a exhibited an IC50 of 31.89 ± 1.19 µM against normal ovarian cell line (OCE1) and a selectivity index of 19.1. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 µM compared with alpelisib (IC50 = 0.061 ± 0.003 µM). Moreover, compound 6a revealed a powerful decrease of Akt and mTOR phosphorylation in the OVCAR-4 cell line. The cell cycle analysis showed that compound 6a caused an arrest at the G2/M phase. The compound also increased the total apoptosis by 26.8-fold and raised the level of caspase-3 by 4.34 times in OVCAR-4. In addition, antibacterial activity was estimated against Gram-positive and Gram-negative bacterial strains. Compounds 11 and 12 were the most active derivatives, with MIC value of 256 µg/ml against Staphylococcus aureus. Molecular docking was done and showed that 6a interlocked and fitted well into the ATP binding site of PI3Kα kinase (Protein Data Bank ID: 4JPS) with a fitness value (-119.153 kcal/mol) and forms the key H-bonds with Val851 and Ser854 like the marketed PI3Kα inhibitor alpelisib. Consequently, 6a is the most promising molecule that could be a lead candidate for further studies.


Subject(s)
Antineoplastic Agents , Molecular Docking Simulation , Staphylococcus aureus , Thiazoles , Thiosemicarbazones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Staphylococcus aureus/drug effects , Cell Line, Tumor , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Cell Proliferation/drug effects , Microbial Sensitivity Tests , Molecular Structure , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Semicarbazones
3.
Bioorg Chem ; 143: 107091, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183683

ABSTRACT

This scientific review documents the recent progress of C3-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C3-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc. Regarding organic synthesis, several traditional and advanced strategies have been reported, particularly those that started with isatin derivatives.


Subject(s)
Benzopyrans , Nitriles , Spiro Compounds , Spirooxindoles , Molecular Docking Simulation , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Oxindoles/pharmacology , Oxindoles/chemistry
4.
RSC Adv ; 13(1): 186-211, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36605653

ABSTRACT

In this research paper, aromatic sulfonamide-derived ethyl ester (p-TSAE) and its acyl hydrazide (p-TSAH) were directly synthesized, characterized, and employed for the first time as prospective anticorrosive agents to protect mild steel in 1.0 M HCl conditions. The corrosion efficiency was probed by electrochemical methods including polarization, impedance, and frequency modulation measurements. Optimal efficiencies of 94% and 92% were detected for the hydrazide and ester, respectively, revealing excellent corrosion inhibition. Moreover, both the hydrazide and ester molecules combat the cathodic and anodic reactions correspondingly in a mixed-type manner. The electron transfer (ET) at the inhibitor/metal interface was evaluated using DFT at the B3LYP/6-31g(d,p) level. Natural bond orbital analysis (NBO) and frontier molecular orbital analysis (FMO) calculations showed superior capabilities of the synthesized inhibitors to easily reallocate charge into the metal surface. However, the hydrazide molecules showed slightly better inhibition efficiency than the ester due to the strong interaction between the lone pairs of the nitrogen atoms and the d-orbitals of the metal. The chemical hardness of the hydrazide and ester are 2.507 and 2.511 eV, respectively, in good accordance with the recorded electrochemical inhibition efficiencies for both molecules. Good and straightforward correlations between the experiments and calculations are obtained.

5.
Int J Biol Macromol ; 183: 1283-1292, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34000306

ABSTRACT

Contamination of water with the copper(II) ions leads to serious diseases such as liver damage and cancer. This deadly effect prompted us to target the synthesis of a novel functionalized chitosan (Cs-BT) to be used as an adsorbent for removing the copper(II) ions from the aqueous solution. The functionalization was done by introducing benzothiazole moiety into the chitosan (Cs) chain and confirmed by the full disappearance of the NH2 band in the FT-IR spectrum of the adsorbent. The TGA-DTG analysis revealed that the functionalization reduced the thermal stability of the adsorbent (Cs-BT) as compared with pure chitosan. The adsorption was evidenced by SEM and EDX analysis. The adsorption study demonstrated that the optimal adsorption conditions were 120 min contact time, pH = 6, and initial Cu(II) concentration 200 mg/L. At these conditions, the Cs-BT achieved a maximum copper adsorption capacity of 1439.7 mg/g. Consequently, Cs-BT could be a promising and efficient Cu adsorbent in water treatment. Study the adsorption kinetics and isotherms manifested that the pseudo-first-order was better than pseudo-second-order and Temkin isotherm was better than Langmuir, Freundlich, and Dubinin-Radushkevich for explaining the adsorption process. The calculated thermodynamic parameters implied the spontaneity and the endothermic nature of the adsorption process.


Subject(s)
Benzothiazoles/chemistry , Chitosan/chemistry , Copper/analysis , Water Pollutants, Chemical/analysis , Adsorption , Drug Stability , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics
6.
Green Chem Lett Rev ; 14(4): 578-599, 2021.
Article in English | MEDLINE | ID: mdl-35821884

ABSTRACT

A metal-free, atom-economy and simple work-up domino amination-Knoevenagel condensation approach to construct new coumarin analogous (4a-f and 8a-e) was described. Further, new formyl (5a,d-f) and nitro (9a,d-f) coumarin derivatives were synthesized via C-N coupling reaction of various cyclic secondary amines and 4-chloro-3-(formyl-/nitro)coumarins (1a,c), respectively. The confirmed compounds were screened for their in vitro anti-proliferative activity against KB-3-1, A549 and PC3 human cancer cell lines using resazurin cellular-based assay. Among them, coumarin derivatives 4e and 8e displayed the best anti-cervical cancer potency (KB-3-1) with IC50 values of 15.5 ± 3.54 and 21 ± 4.24 µM, respectively. Also, 4e showed the most promising cytotoxicity toward A549 with IC50 value of 12.94 ± 1.51 µM. As well, 9d presented a more significant impact of potency against PC3 with IC50 7.31 ± 0.48 µM. Moreover, 8d manifested selectivity against PC3 (IC50 = 20.16 ± 0.07 µM), while 8e was selective toward KB-3-1 cell line (IC50 = 21 ± 4.24 µM). Matching with docking profile, the enzymatic assay divulged that 8e is a dual potent single-digit nanomolar inhibitor of VEGFR-2 and EGFR with IC50 values of 24.67 nM and 31.6 nM that were almost equipotent to sorafenib (31.08 nM) and erlotinib (26.79 nM), respectively.

7.
Bioorg Chem ; 105: 104387, 2020 12.
Article in English | MEDLINE | ID: mdl-33130344

ABSTRACT

7H-Benzo[7,8]chromeno[2,3-d]pyrimidin-9(8H)-amine (6a,b) have been synthesized via hydrazinolysis of the imidates (5a,b). Polysubstituted chromenotriazolopyrimidine (7a-j), (12a,b) and Schiff base (8a,b) derivatives have also been prepared. The new heterocyclic derivatives were affirmed by spectral data. The target compounds have been screened for antibacterial and antifungal activity. Compounds 6a,b and 7a-c, g,h displayed the most favorable antimicrobial activities in resemblance to the reference antimicrobial agents by IZ range over 24 mm. In addition, MIC, MBC and MFC were also tested and screen for most active compound 6a by 6.25 µg/mL showing bactericidal effect. SAR study revealed that the antimicrobial vitality of the target compounds was safely influenced by the lipophilicity substituents and the calculated log P value. The potent compounds were subjected into in vitro enzyme screening (14α-Demethylase and DNA Gyrase) against both interesting targets and showed good inhibitory profile. Molecular modeling analyses were introduced and discussed focusing on the docking of active compounds into two essential targets, and their ADMET properties were studied.


Subject(s)
14-alpha Demethylase Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Benzopyrans/pharmacology , Topoisomerase II Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemical synthesis , 14-alpha Demethylase Inhibitors/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus/drug effects , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Candida albicans/drug effects , DNA Gyrase/metabolism , Dose-Response Relationship, Drug , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Sterol 14-Demethylase/metabolism , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
8.
Arch Microbiol ; 202(7): 1985-1996, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32476047

ABSTRACT

A soft coral-derived fungus Penicillium sp. among other isolates e high antibacterial, anti-yeast and cytotoxic activities. The fungus, Penicillium sp. MMA, isolated from Sarcphyton glaucoma, afforded nine diverse compounds (1-9). Their structures were identified by 1D and 2 D NMR and ESI-MS spectroscopic data as two alkaloids: veridicatol (1), aurantiomide C (2); one sesquiterpene, aspterric acid (3); two carboxylic acids, 3,4-dihydroxy-benzoic acid; (4) and linoleic acid (5); three steroids, ergosterol (6), ß-Sitosterol (7), ß-Sitosterol glucoside (8) along with the sphingolipid, cerebroside A (9). Biologically, the antimicrobial, antioxidant, in vitro cytotoxicity and antibiofilm activities were studied in comparison with the fungal extract. The in silico computational studies were implemented to predict drug and lead likeness properties for 1-4. The fungus was taxonomically characterized by morphological and molecular biology (18srRNA) approaches.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Bacteria/drug effects , Cell Survival/drug effects , Fungi/drug effects , Penicillium/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Indian Ocean , Molecular Structure , Penicillium/classification , Penicillium/genetics , Penicillium/metabolism , RNA, Ribosomal, 18S/genetics
9.
Z Naturforsch C J Biosci ; 72(11-12): 467-475, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-28525356

ABSTRACT

A new series of heterocyclic Schiff bases 2-9 containing indole moiety were synthesized by facile and efficient condensation of indole-3/2/5-carboxaldehyde (1a/1b/1c) with different aromatic and heterocyclic primary amines using conventional and/or microwave irradiation methods. The structures of the obtained compounds were assigned by sophisticated spectroscopic and spectrometric techniques (1D-NMR, 2D-NMR and MS). The synthesized compounds were screened for their cytotoxicity and antibacterial activities. In vitro cytotoxicity screening revealed that compound 5 exhibited moderate activity against KB-3-1 cell line (IC50=57.7 µM) while 5-indolylimino derivative 7 indicated close to the activity (IC50=19.6 µM) in comparison with the positive control (+)-Griseofulvin (IC50=19.2 µM), while the tested compounds 5, 6b, 7 and 9 revealed good or moderate antibacterial activity. In addition, molecular docking study of Schiff bases 2-9 was performed by Molecular Operating Environment (MOE 2014.09) program on the matrix metalloproteinase-8 (MMP-8) (Protein Data Bank (PDB) ID: 1MNC) in an attempt to explore their mode of action as anticancer drugs.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Chemistry Techniques, Synthetic , Cytotoxins/chemical synthesis , Indoles/chemistry , Matrix Metalloproteinase 8/chemistry , Schiff Bases/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Cell Line, Tumor , Cytotoxins/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Griseofulvin/chemistry , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Micrococcus luteus/drug effects , Micrococcus luteus/growth & development , Microwaves , Molecular Docking Simulation , Pseudomonas/drug effects , Pseudomonas/growth & development , Schiff Bases/pharmacology , Staphylococcus/drug effects , Staphylococcus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL