Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters








Publication year range
1.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39131318

ABSTRACT

Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome datasets from mouse and macaque spinal cords and discovered putative enhancers for each neuronal population. We cloned these enhancers into adeno-associated viral vectors (AAVs) driving a reporter fluorophore and functionally screened them in mouse. The most promising candidate enhancers were then extensively characterized using imaging and molecular techniques and further tested in rat and macaque to show conservation of LMN labeling. Additionally, we combined enhancer elements into a single vector to achieve simultaneous labeling of upper motor neurons (UMNs) and LMNs. This unprecedented LMN toolkit will enable future investigations of cell type function across species and potential therapeutic interventions for human neurodegenerative diseases.

2.
Sci Transl Med ; 13(576)2021 01 13.
Article in English | MEDLINE | ID: mdl-33441422

ABSTRACT

Organ infiltration by donor T cells is critical to the development of acute graft-versus-host disease (aGVHD) in recipients after allogeneic hematopoietic stem cell transplant (allo-HCT). However, deconvoluting the transcriptional programs of newly recruited donor T cells from those of tissue-resident T cells in aGVHD target organs remains a challenge. Here, we combined the serial intravascular staining technique with single-cell RNA sequencing to dissect the tightly connected processes by which donor T cells initially infiltrate tissues and then establish a pathogenic tissue residency program in a rhesus macaque allo-HCT model that develops aGVHD. Our results enabled creation of a spatiotemporal map of the transcriptional programs controlling donor CD8+ T cell infiltration into the primary aGVHD target organ, the gastrointestinal (GI) tract. We identified the large and small intestines as the only two sites demonstrating allo-specific, rather than lymphodepletion-driven, T cell infiltration. GI-infiltrating donor CD8+ T cells demonstrated a highly activated, cytotoxic phenotype while simultaneously developing a canonical tissue-resident memory T cell (TRM) transcriptional signature driven by interleukin-15 (IL-15)/IL-21 signaling. We found expression of a cluster of genes directly associated with tissue invasiveness, including those encoding adhesion molecules (ITGB2), specific chemokines (CCL3 and CCL4L1) and chemokine receptors (CD74), as well as multiple cytoskeletal proteins. This tissue invasion transcriptional signature was validated by its ability to discriminate the CD8+ T cell transcriptome of patients with GI aGVHD from those of GVHD-free patients. These results provide insights into the mechanisms controlling tissue occupancy of target organs by pathogenic donor CD8+ TRM cells during aGVHD in primate transplant recipients.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Acute Disease , Animals , CD8-Positive T-Lymphocytes , Humans , Macaca mulatta , Tissue Donors
3.
Sci Rep ; 8(1): 15867, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30367140

ABSTRACT

Although thimerosal, an ethylmercury-based preservative, has been removed from most pediatric vaccines in the United States, some multidose vaccines, such as influenza vaccines, still contain thimerosal. Considering that a growing number of studies indicate involvement of the gut microbiome in infant immune development and vaccine responses, it is important to elucidate the impact of pediatric vaccines, including thimerosal-containing vaccines, on gut microbial structure and function. Here, a non-human primate model was utilized to assess how two vaccine schedules affect the gut microbiome in infants (5-9 days old) and juveniles (77-88 weeks old) through 16S ribosomal RNA sequencing and metabolomics analyses of the fecal samples. Two treatment groups (n = 12/group) followed either the vaccine schedule that was in place during the 1990s (intensive exposure to thimerosal) or an expanded schedule administered in 2008 (prenatal and postnatal exposure to thimerosal mainly via influenza vaccines), and were compared with a control group (n = 16) that received saline injections. The primary impact on gut microbial structure and function was age. Although a few statistically significant impacts of the two common pediatric vaccine schedules were observed when confounding factors were considered, the magnitude of the differences was small, and appeared to be positive with vaccination.


Subject(s)
Gastrointestinal Microbiome , Animals , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Immunization Schedule , Influenza Vaccines/immunology , Macaca mulatta/growth & development , Metabolomics , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Thimerosal/pharmacology , Vaccination
4.
Nano Lett ; 18(7): 4516-4522, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29927605

ABSTRACT

Two-dimensional semiconductors such as monolayer MoS2 are of interest for future applications including flexible electronics and end-of-roadmap technologies. Most research to date has focused on low-field mobility, but the peak current-driving ability of transistors is limited by the high-field saturation drift velocity, vsat. Here, we measure high-field transport as a function of temperature for the first time in high-quality synthetic monolayer MoS2. We find that in typical device geometries (e.g. on SiO2 substrates) self-heating can significantly reduce current drive during high-field operation. However, with measurements at varying ambient temperature (from 100 to 300 K), we extract electron vsat = (3.4 ± 0.4) × 106 cm/s at room temperature in this three-atom-thick semiconductor, which we benchmark against other bulk and layered materials. With these results, we estimate that the saturation current in monolayer MoS2 could exceed 1 mA/µm at room temperature, in digital circuits with near-ideal thermal management.

5.
Cancer Discov ; 8(6): 750-763, 2018 06.
Article in English | MEDLINE | ID: mdl-29563103

ABSTRACT

Chimeric antigen receptor (CAR) T-cell immunotherapy has revolutionized the treatment of refractory leukemias and lymphomas, but is associated with significant toxicities, namely cytokine release syndrome (CRS) and neurotoxicity. A major barrier to developing therapeutics to prevent CAR T cell-mediated neurotoxicity is the lack of clinically relevant models. Accordingly, we developed a rhesus macaque (RM) model of neurotoxicity via adoptive transfer of autologous CD20-specific CAR T cells. Following cyclophosphamide lymphodepletion, CD20 CAR T cells expand to 272 to 4,450 cells/µL after 7 to 8 days and elicit CRS and neurotoxicity. Toxicities are associated with elevated serum IL6, IL8, IL1RA, MIG, and I-TAC levels, and disproportionately high cerebrospinal fluid (CSF) IL6, IL2, GM-CSF, and VEGF levels. During neurotoxicity, both CD20 CAR and non-CAR T cells accumulate in the CSF and in the brain parenchyma. This RM model demonstrates that CAR T cell-mediated neurotoxicity is associated with proinflammatory CSF cytokines and a pan-T cell encephalitis.Significance: We provide the first immunologically relevant, nonhuman primate model of B cell-directed CAR T-cell therapy-mediated CRS and neurotoxicity. We demonstrate CAR and non-CAR T-cell infiltration in the CSF and in the brain during neurotoxicity resulting in pan-encephalitis, accompanied by increased levels of proinflammatory cytokines in the CSF. Cancer Discov; 8(6); 750-63. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 663.


Subject(s)
Antigens, CD20/immunology , Cyclophosphamide/administration & dosage , Immunotherapy, Adoptive/adverse effects , Neurotoxicity Syndromes/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Cell Line, Tumor , Cyclophosphamide/adverse effects , Disease Models, Animal , Humans , K562 Cells , Macaca mulatta , Neurotoxicity Syndromes/etiology , Transplantation, Autologous
6.
Nat Med ; 24(3): 368-374, 2018 03.
Article in English | MEDLINE | ID: mdl-29400709

ABSTRACT

Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.


Subject(s)
Fetus/virology , Pregnancy Complications, Infectious/physiopathology , Zika Virus Infection/virology , Zika Virus/pathogenicity , Animals , Disease Models, Animal , Female , Fetus/physiopathology , Humans , Macaca nemestrina/virology , Microcephaly/diagnostic imaging , Microcephaly/physiopathology , Microcephaly/virology , Neurogenesis/genetics , Pregnancy , Pregnancy Complications, Infectious/diagnostic imaging , Pregnancy Complications, Infectious/virology , Zika Virus/genetics , Zika Virus Infection/genetics , Zika Virus Infection/physiopathology
8.
Nat Med ; 22(11): 1256-1259, 2016 11.
Article in English | MEDLINE | ID: mdl-27618651

ABSTRACT

We describe the development of fetal brain lesions after Zika virus (ZIKV) inoculation in a pregnant pigtail macaque. Periventricular lesions developed within 10 d and evolved asymmetrically in the occipital-parietal lobes. Fetal autopsy revealed ZIKV in the brain and significant cerebral white matter hypoplasia, periventricular white matter gliosis, and axonal and ependymal injury. Our observation of ZIKV-associated fetal brain lesions in a nonhuman primate provides a model for therapeutic evaluation.


Subject(s)
Brain/diagnostic imaging , Fetus/diagnostic imaging , Pregnancy Complications, Infectious/diagnostic imaging , Zika Virus Infection/diagnostic imaging , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Brain/metabolism , Brain/pathology , Brain/virology , Choline/metabolism , Creatine/metabolism , Echoencephalography , Female , Fetus/metabolism , Fetus/pathology , Fetus/virology , Glutamic Acid/metabolism , Glutamine/metabolism , Inositol/metabolism , Macaca nemestrina , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , RNA, Viral/metabolism , Ultrasonography, Prenatal , Zika Virus/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/pathology
9.
Nano Lett ; 16(6): 3824-30, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27232636

ABSTRACT

The scaling of transistors to sub-10 nm dimensions is strongly limited by their contact resistance (RC). Here we present a systematic study of scaling MoS2 devices and contacts with varying electrode metals and controlled deposition conditions, over a wide range of temperatures (80 to 500 K), carrier densities (10(12) to 10(13) cm(-2)), and contact dimensions (20 to 500 nm). We uncover that Au deposited in ultra-high vacuum (∼10(-9) Torr) yields three times lower RC than under normal conditions, reaching 740 Ω·µm and specific contact resistivity 3 × 10(-7) Ω·cm(2), stable for over four months. Modeling reveals separate RC contributions from the Schottky barrier and the series access resistance, providing key insights on how to further improve scaling of MoS2 contacts and transistor dimensions. The contact transfer length is ∼35 nm at 300 K, which is verified experimentally using devices with 20 nm contacts and 70 nm contact pitch (CP), equivalent to the "14 nm" technology node.

10.
Proc Natl Acad Sci U S A ; 112(40): 12498-503, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26417083

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Some anecdotal reports suggest that ASD is related to exposure to ethyl mercury, in the form of the vaccine preservative, thimerosal, and/or receiving the measles, mumps, rubella (MMR) vaccine. Using infant rhesus macaques receiving thimerosal-containing vaccines (TCVs) following the recommended pediatric vaccine schedules from the 1990s and 2008, we examined behavior, and neuropathology in three brain regions found to exhibit neuropathology in postmortem ASD brains. No neuronal cellular or protein changes in the cerebellum, hippocampus, or amygdala were observed in animals following the 1990s or 2008 vaccine schedules. Analysis of social behavior in juvenile animals indicated that there were no significant differences in negative behaviors between animals in the control and experimental groups. These data indicate that administration of TCVs and/or the MMR vaccine to rhesus macaques does not result in neuropathological abnormalities, or aberrant behaviors, like those observed in ASD.


Subject(s)
Autistic Disorder/diagnosis , Brain Diseases/diagnosis , Thimerosal/administration & dosage , Vaccines/administration & dosage , Amygdala/drug effects , Amygdala/metabolism , Animals , Animals, Newborn , Autistic Disorder/chemically induced , Blotting, Western , Brain Diseases/chemically induced , Calbindins/metabolism , Calcium-Binding Proteins/metabolism , Cerebellum/drug effects , Cerebellum/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glutamate Decarboxylase/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Immunohistochemistry , Macaca mulatta , Male , Microfilament Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neuropathology/methods , Preservatives, Pharmaceutical/administration & dosage , Preservatives, Pharmaceutical/adverse effects , Thimerosal/adverse effects , Time Factors , Vaccination/methods , Vaccines/adverse effects
11.
J Sep Sci ; 32(11): 1849-57, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19479776

ABSTRACT

The application of vacuum GC has several advantages over pressurized GC. One of the key characteristics is that the optimal gas velocity is very high. Combined with short capillary columns of wide internal diameter, this results in short analysis times using standard GC-MS equipment. To make vacuum GC possible using a GC-MS system, a restriction must be positioned at the injection side of the column. This restriction is usually made of deactivated 0.1 mm i.d. fused-silica tubing which is coupled to the analytical column. Such restrictions will work, but practical challenges are found in coupling, reducing dead volume and robustness. A new way of making restrictions is by incorporating the restriction into the injection port. Using well-defined short pieces of fused silica with internal diameter of 0.025 mm, one can make a restriction using a Press-Tight type connector, and position this inside the injection port. By doing this, the restriction is very short and at high temperature all the time. Activity plays a minimal role, and also leaks will not be an issue as the coupling is in 100% inert gas. Data obtained using this concept is promising as vacuum GC becomes easier and more robust.


Subject(s)
Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Silicon Dioxide/chemistry , Vacuum
12.
Cancer Res ; 65(12): 5133-43, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15958557

ABSTRACT

The early growth response 1 (Egr1) gene is a transcription factor that acts as both a tumor suppressor and a tumor promoter. Egr1-null mouse embryo fibroblasts bypass replicative senescence and exhibit a loss of DNA damage response and an apparent immortal growth, suggesting loss of p53 functions. Stringent expression analysis revealed 266 transcripts with >2-fold differential expression in Egr1-null mouse embryo fibroblasts, including 143 known genes. Of the 143 genes, program-assisted searching revealed 66 informative genes linked to Egr1. All 66 genes could be placed on a single regulatory network consisting of three branch points of known Egr1 target genes: TGFbeta1, IL6, and IGFI. Moreover, 19 additional genes that are known targets of p53 were identified, indicating that p53 is a fourth branch point. Electrophoretic mobility shift assay as well as chromatin immunoprecipitation confirmed that p53 is a direct target of Egr1. Because deficient p53 expression causes tumors in mice, we tested the role of Egr1 in a two-step skin carcinogenesis study (144 mice) that revealed a uniformly accelerated development of skin tumors in Egr1-null mice (P < 0.005). These studies reveal a new role for Egr1 as an in vivo tumor suppressor.


Subject(s)
Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/physiology , Genes, Tumor Suppressor , Immediate-Early Proteins/physiology , Skin Neoplasms/genetics , Transcription Factors/physiology , Tumor Suppressor Protein p53/physiology , 9,10-Dimethyl-1,2-benzanthracene , Animals , Cell Growth Processes/genetics , Chromosome Mapping , DNA Damage , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Early Growth Response Protein 1 , Female , Fibroblasts/physiology , Gene Expression Profiling , Immediate-Early Proteins/deficiency , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Skin Neoplasms/chemically induced , Tetradecanoylphorbol Acetate , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL