Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters








Publication year range
1.
Mater Horiz ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946626

ABSTRACT

The redox-diffusion (RD) battery concept introduces an environmentally friendly solution for stretchable batteries in autonomous wearable electronics. By utilising plant-based redox-active biomolecules and cellulose fibers for the electrode scaffold, separator membrane, and current collector, along with a biodegradable elastomer encapsulation, the battery design overcomes the reliance on unsustainable transition metal-based active materials and non-biodegradable elastomers used in existing stretchable batteries. Importantly, it addresses the drawback of limited attainable battery capacity, where increasing the active material loading often leads to thicker and stiffer electrodes with poor mechanical properties. The concept decouples the active material loading from the mechanical structure of the electrode, enabling high mass loadings, while retaining a skin-like young's modulus and stretchability. A stretchable ion-selective membrane facilitates the RD process, allowing two separate redox couples, while preventing crossovers. This results in a high-capacity battery cell that is both electrochemically and mechanically stable, engineered from sustainable plant-based materials. Notably, the battery components are biodegradable at the end of their life, addressing concerns of e-waste and resource depletion.

2.
ChemSusChem ; : e202400222, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874273

ABSTRACT

Lignin has been extensively researched as a cathode active material in secondary batteries. In the present work, the energy storage potential of lignin naturally present in papers made of softwood chemi-thermomechanical pulp (CTMP) is explored. More specifically, effects from softwood CTMP fines on the electrochemical characteristics have been studied. Compared to pulp fibers, fines are higher in lignin content and have higher specific surface area. It was expected that this would be positive for the electrode performance; however, the result points to the opposite. The fines do not significantly contribute to a higher lignin specific capacity, and they deteriorate the cycling stability. Higher fines content was found to result in a higher oxidative activity as well as more abundant competing reactions. These competing reactions are believed to be linked to the cycle stability. Therefore, we hypothesize that the electrochemical stability of lignin can be better understood by studying differences between fines and fiber lignin. As the theoretical specific capacity of this material is about 20 times larger than obtained here, identification of the reasons for this capacity discrepancy is needed to realize the full potential of lignin-based paper batteries.

4.
Biomacromolecules ; 25(3): 1933-1941, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38324476

ABSTRACT

Nanocellulose-based membranes have attracted intense attention in bioelectronic devices due to their low cost, flexibility, biocompatibility, degradability, and sustainability. Herein, we demonstrate a flexible ionic diode using a cross-linked bipolar membrane fabricated from positively and negatively charged cellulose nanofibrils (CNFs). The rectified current originates from the asymmetric charge distribution, which can selectively determine the direction of ion transport inside the bipolar membrane. The mechanism of rectification was demonstrated by electrochemical impedance spectroscopy with voltage biases. The rectifying behavior of this kind of ionic diode was studied by using linear sweep voltammetry to obtain current-voltage characteristics and the time dependence of the current. In addition, the performance of cross-linked CNF diodes was investigated while changing parameters such as the thickness of the bipolar membranes, the scanning voltage range, and the scanning rate. A good long-term stability due to the high density cross-linking of the diode was shown in both current-voltage characteristics and the time dependence of current.


Subject(s)
Cellulose , Ions , Membranes
5.
Glob Chall ; 7(9): 2300034, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37745827

ABSTRACT

The quest for eco-friendly materials with anticipated positive impact for sustainability is crucial to achieve the UN sustainable development goals. Classical strategies of composite materials can be applied on novel nanomaterials and green materials. Besides the actual technology and applications also processing and manufacturing methods should be further advanced to make entire technology concepts sustainable. Here, they show an efficient way to combine two low-cost materials, cellulose and zinc oxide (ZnO), to achieve novel functional and "green" materials via paper-making processes. While cellulose is the most abundant and cost-effective organic material extractable from nature. ZnO is cheap and known of its photocatalytic, antibacterial, and UV absorption properties. ZnO nanowires are grown directly onto cellulose fibers in water solutions and then dewatered in a process mimicking existing steps of large-scale papermaking technology. The ZnO NW paper exhibits excellent photo-conducting properties under simulated sunlight with good ON/OFF switching and long-term stability (90 minutes). It also acts as an efficient photocatalyst for hydrogen peroxide (H2O2) generation (5.7 × 10-9 m s-1) with an envision the possibility of using it in buildings to enable large surfaces to spontaneously produce H2O2 at its outer surface. Such technology promise for fast degradation of microorganisms to suppress the spreading of diseases.

6.
Proc Natl Acad Sci U S A ; 120(18): e2218380120, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37094114

ABSTRACT

The nature of mass transport in plants has recently inspired the development of low-cost and sustainable wood-based electronics. Herein, we report a wood electrochemical transistor (WECT) where all three electrodes are fully made of conductive wood (CW). The CW is prepared using a two-step strategy of wood delignification followed by wood amalgamation with a mixed electron-ion conducting polymer, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). The modified wood has an electrical conductivity of up to 69 Sm-1 induced by the formation of PEDOT:PSS microstructures inside the wood 3D scaffold. CW is then used to fabricate the WECT, which is capable of modulating an electrical current in a porous and thick transistor channel (1 mm) with an on/off ratio of 50. The device shows a good response to gate voltage modulation and exhibits dynamic switching properties similar to those of an organic electrochemical transistor. This wood-based device and the proposed working principle demonstrate the possibility to incorporate active electronic functionality into the wood, suggesting different types of bio-based electronic devices.

7.
ACS Appl Mater Interfaces ; 14(50): 55850-55863, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36508553

ABSTRACT

Printed paper-based electronics offers solutions to rising energy concerns by supplying flexible, environmentally friendly, low-cost infrastructure for portable and wearable electronics. Herein, we demonstrate a scalable spray-coating approach to fabricate tailored paper poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/cellulose nanofibril (CNF) electrodes for all-printed supercapacitors. Layer-by-layer spray deposition was used to achieve high-quality electrodes with optimized electrode thickness. The morphology of these electrodes was analyzed using advanced X-ray scattering methods, revealing that spray-coated electrodes have smaller agglomerations, resulting in a homogeneous film, ultimately suggesting a better electrode manufacturing method than drop-casting. The printed paper-based supercapacitors exhibit an areal capacitance of 9.1 mF/cm2, which provides enough energy to power electrochromic indicators. The measured equivalent series resistance (ESR) is as low as 0.3 Ω, due to improved contact and homogeneous electrodes. In addition, a demonstrator in the form of a self-powered wearable wristband is shown, where a large-area (90 cm2) supercapacitor is integrated with a flexible solar cell and charged by ambient indoor light. This demonstration shows the tremendous potential for sequential coating/printing methods in the scaling up of printed wearables and self-sustaining systems.

8.
Carbohydr Polym ; 278: 118938, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973756

ABSTRACT

Ion selective membranes are at the heart of energy conversion and harvesting, water treatment, and biotechnologies. The currently available membranes are mostly based on expensive and non-biodegradable polymers. Here, we report a cation-selective and low-cost membrane prepared from renewable nanocellulose and 1,2,3,4-butanetetracarboxylic acid which simultaneously serves as crosslinker and source of anionic surface groups. Charge density and structure of the membranes are studied. By using different degrees of crosslinking, simultaneous control over both the nanochannel structure and surface charge concentration is achieved, which in turn determines the resulting ion transport properties. Increasing negative charge concentration via higher crosslinker content, the obtained ion conductivity reaches up to 8 mS/cm (0.1 M KCl). Optimal ion selectivity, also influenced by the solution pH, is achieved at 20 wt% crosslinker addition (with ion conductivity of 1.6 mS/cm). As regular ~1.4 nm nanochannels were formed at this composition, nanofluidic contribution to ion transport is likely.


Subject(s)
Cellulose/chemistry , Cross-Linking Reagents/chemistry , Nanostructures/chemistry , Butanes/chemistry , Carboxylic Acids/chemistry , Electric Conductivity , Ion Transport
9.
Adv Mater ; 33(33): e2102451, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34219300

ABSTRACT

Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.

10.
ACS Appl Mater Interfaces ; 12(43): 48828-48835, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33052660

ABSTRACT

Eco-friendly and cost-effective materials and processes to manufacture functional substrates are crucial to further advance the area of printed electronics. One potential key component in the printed electronics platform is an electrically functionalized paper, produced by simply mixing common cellulosic pulp fibers with high-performance electroactive materials. Herein, an electronic paper including nanographite has been prepared using a standardized and scalable papermaking technique. No retention aid was needed to achieve a conducting nanographite loading as high as 50 wt %. The spontaneous retention that provides the integrity and stability of the nanographite paper, likely originates partially from an observed water-stable adhesion of nanographite flakes onto the fiber surfaces. The resulting paper exhibits excellent electrical characteristics, such as an in-plane conductivity of 107 S/cm and an areal capacitance of 9.2 mF/cm2, and was explored as the back-electrode in printed electrochromic displays.

11.
Polymers (Basel) ; 11(2)2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30960251

ABSTRACT

Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.

12.
Sci Adv ; 3(6): e1700345, 2017 06.
Article in English | MEDLINE | ID: mdl-28695197

ABSTRACT

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability-functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors.

13.
ACS Appl Mater Interfaces ; 9(3): 2747-2757, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28032741

ABSTRACT

An understanding of the doping and ion distributions in light-emitting electrochemical cells (LECs) is required to approach a realistic conduction model which can precisely explain the electrochemical reactions, p-n junction formation, and ion dynamics in the active layer and to provide relevant information about LECs for systematic improvement of function and manufacture. Here, Fourier-transform infrared (FTIR) microscopy is used to monitor anion density profile and polymer structure in situ and for time-resolved mapping of electrochemical doping in an LEC under bias. The results are in very good agreement with the electrochemical doping model with respect to ion redistribution and formation of a dynamic p-n junction in the active layer. We also physically slow ions by decreasing the working temperature and study frozen-junction formation and immobilization of ions in a fixed-junction LEC device by FTIR imaging. The obtained results show irreversibility of the ion redistribution and polymer doping in a fixed-junction device. In addition, we demonstrate that infrared microscopy is a useful tool for in situ characterization of electroactive organic materials.

14.
Adv Sci (Weinh) ; 3(2): 1500305, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27774392

ABSTRACT

A mixed ionic-electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio-phene):-poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

15.
Sci Rep ; 6: 28921, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27357006

ABSTRACT

Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-µPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-µPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-µPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm(2), a current rectification ratio up to 4 × 10(3) between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.


Subject(s)
Cellulose/chemistry , Nanofibers/chemistry , Silicon/chemistry , Wearable Electronic Devices , Semiconductors
16.
Adv Mater ; 28(22): 4556-62, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26836440

ABSTRACT

Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

17.
Proc Natl Acad Sci U S A ; 111(33): 11943-8, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25002504

ABSTRACT

Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications.

18.
ACS Appl Mater Interfaces ; 6(15): 13266-70, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-24998703

ABSTRACT

We report a method to construct reprogrammable circuits based on organic electrochemical (EC) p-n junction diodes. The diodes are built up from the combination of the organic conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and a polymer electrolyte. The p-n diodes are defined by EC doping performed at 70 °C, and then stabilized at -30 °C. The reversible EC reaction allows for in situ reprogramming of the polarity of the organic p-n junction, thus enabling us to reconfigure diode circuits. By combining diodes of specific polarities dedicated circuits have been created, such as various logic gates, a voltage limiter and an AC/DC converter. Reversing the EC reaction allows in situ reprogramming of the p-n junction polarity, thus enabling reconfiguration of diode circuits, for example, from an AND gate to an OR gate. The reprogrammable circuits are based on p-n diodes defined from only two layers, the electrodes and then the active semiconductor:electrolyte composite material. Such simple device structures are promising for large-area and fully printed reconfigurable circuits manufactured using common printing tools. The structure of the reported p-n diodes mimics the architecture of and is based on identical materials used to construct light-emitting electrochemical cells (LEC). Our findings thus provide a robust signal routing technology that is easily integrated with traditional LECs.

19.
J Am Chem Soc ; 135(33): 12224-7, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23924078

ABSTRACT

In conventional light-emitting electrochemical cells (LECs), an off-centered p-n junction is one of the major drawbacks, as it leads to exciton quenching at one of the charge-injecting electrodes and results in performance instability. To combat this problem, we have developed a new device configuration, the double-gate light-emitting electrochemical transistor (DG-LECT), in which the location of the light-emitting p-n junction can be precisely defined via the position of the two gate terminals. Based on a planar LEC structure, two gate electrodes made from an electrochemically active conducting polymer are employed to predefine the p- and n-doped area of the light-emitting polymer. Thus, a p-n junction is formed in between the p-doped and n-doped regions. We demonstrate a homogeneous and centered p-n junction as well as other predefined junction patterns in these DG-LECT devices. Additionally, we report an electrical model that explains the operation of the DG-LECTs. The DG-LECT device provides a new tool to study the fundamental physics of LECs, as it dissects the key working process of LEC into decoupled p-doping, n-doping, and electroluminescence.

20.
J Am Chem Soc ; 134(2): 901-4, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22188539

ABSTRACT

Low-voltage-operating organic electrochemical light-emitting cells (LECs) and transistors (OECTs) can be realized in robust device architectures, thus enabling easy manufacturing of light sources using printing tools. In an LEC, the p-n junction, located within the organic semiconductor channel, constitutes the active light-emitting element. It is established and fixated through electrochemical p- and n-doping, which are governed by charge injection from the anode and cathode, respectively. In an OECT, the electrochemical doping level along the organic semiconducting channel is controlled via the gate electrode. Here we report the merger of these two devices: the light-emitting electrochemical transistor, in which the location of the emitting p-n junction and the current level between the anode and cathode are modulated via a gate electrode. Light emission occurs at 4 V, and the emission zone can be repeatedly moved back and forth within an interelectrode gap of 500 µm by application of a 4 V gate bias. In transistor operation, the estimated on/off ratio ranges from 10 to 100 with a gate threshold voltage of -2.3 V and transconductance value between 1.4 and 3 µS. This device structure opens for new experiments tunable light sources and LECs with added electronic functionality.

SELECTION OF CITATIONS
SEARCH DETAIL