Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Metab ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333384

ABSTRACT

The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid ß-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid ß-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-ß targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.

2.
Front Pharmacol ; 13: 1082797, 2022.
Article in English | MEDLINE | ID: mdl-36569326

ABSTRACT

The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.

3.
Oncogene ; 40(19): 3351-3363, 2021 05.
Article in English | MEDLINE | ID: mdl-33864000

ABSTRACT

The tricarboxylic acid cycle (TCA cycle) has been known for decades as a hub for generating cellular energy and precursors for biosynthetic pathways. Several cancers harbor mutations that affect the integrity of this cycle, mostly at the levels of isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH). This results in dysregulation in the production of TCA cycle metabolites and is probably implicated in cancer initiation. By modulating cellular activities, including metabolism and signaling, TCA cycle intermediates are able to impact the processes of cancer development and progression. In this review, we discuss the functional roles of the TCA cycle intermediates in suppressing or promoting the progression of cancers. A further understanding of TCA metabolites' roles and molecular mechanisms in oncogenesis would prompt developing novel metabolite-based cancer therapy in the future.


Subject(s)
Fumarate Hydratase/metabolism , Isocitrate Dehydrogenase/metabolism , Neoplasms/metabolism , Succinate Dehydrogenase/metabolism , Citric Acid Cycle , Humans , Metabolome , Mutation , Neoplasms/genetics , Neoplasms/pathology
4.
Wiley Interdiscip Rev RNA ; 12(3): e1635, 2021 05.
Article in English | MEDLINE | ID: mdl-33230974

ABSTRACT

The microRNA (miR)-99 family comprising miR-99a, miR-99b, and miR-100 is an evolutionarily conserved family with existence dating prior to the bilaterians. Members are typically oncogenic in leukemia while their functional roles in other cancers alternate between that of a tumor suppressor and a tumor promoter. Targets of the miR-99 family rank in the lists of oncogenes and tumor suppressors, thereby illustrating the dual role of this miR family as oncogenic miRs (oncomiRs) and tumor suppressing miRs (TSmiRs) in different cellular contexts. In addition to their functional roles in cancers, miR-99 family is implicated in the modulation of macrophage inflammatory responses and T-cell subsets biology, thereby exerting critical roles in the maintenance of tissue homeostasis, establishment of peripheral tolerance as well as resolution of an inflammatory reaction. Here, we review emerging knowledge of this miR family and discuss remaining concerns linked to their activities. A better dissection of the functional roles of miR-99 family members in cancer and immunity will help in the development of novel miR-99-based therapeutics for the treatment of human cancer and immune-related diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Subject(s)
Immunity/genetics , MicroRNAs , Neoplasms , Carcinogenesis , Humans , MicroRNAs/genetics , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL