Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(33): 43713-43723, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39121481

ABSTRACT

Light management (LM) is the key to the encapsulation of high-performance silicon (Si) photovoltaic devices (PVs). In this work, simulation analyses provide meaningful insights into optical losses and guide the improvement of the PV performance of the encapsulated silicon solar cells (Encap-Si SCs). An antireflective layer, textured polydimethylsiloxane (PDMS), is designed to reduce reflection losses, especially at a lower illumination intensity, thereby achieving an improvement of 10.89% in the short-current density (JSC) and hence 12.67% in the power conversion efficiency (PCE) when illuminated at an incident angle of 60°. Subsequently, a luminescence down-shifting material, lead-free Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) double perovskite phosphor, is incorporated into the PDMS film to further enhance the energy yield in the ultraviolet (UV) region. The textured PDMS film with an optimized CANBIC content ultimately achieves a significant improvement in PCE from 21.770 to 23.136%. This enhancement is attributed to the increase in JSC by 2.381 mA/cm2 due to the reduced reflection losses (by antireflective PDMS) and down-converted UV energy (by CANBIC), providing a remarkable advance in LM toward highly efficient encapsulated PVs.

2.
Article in English | MEDLINE | ID: mdl-37906729

ABSTRACT

Colloidal AgIn5S8/ZnS quantum dots (QDs) have recently emerged as a promising, efficient, nontoxic, down-shifting material in optoelectronic devices. These QDs exhibit a high photoluminescent quantum yield and offer a range of potential applications, specifically in the field of photovoltaics (PVs) for light management. In this work, we report an eco-friendly method to synthesize AgIn5S8/ZnS QDs and deposit them on commercial silicon solar cells (with an active area of 7.5 cm2), with which the short-circuit current (JSC) enhanced by 1.44% and hence the power conversion efficiency by 2.51%. The enhancements in PV performance are mainly attributable to the improved external quantum efficiency in the ultraviolet region and reduced surface reflectance in the ultraviolet and near-infrared regions. We study the effect of QD concentration on the bifunctions of downshifting and antireflection. The optimal 15 mg/mL QDs blade-coated onto the Si solar cells realize maximum current generation as the reflectance loss in the visible wavelength is compensated by the minimized reflection in the near-infrared region.

SELECTION OF CITATIONS
SEARCH DETAIL