Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
iScience ; 27(10): 110908, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39351197

ABSTRACT

Cellular quiescence is a reversible and tightly regulated stem cell function essential for healthy aging. However, the elements that control quiescence during aging remain poorly defined. Using melanocyte stem cells (McSCs), we find that stem cell quiescence is neither passive nor static. For example, gene expression profiling of the transition from proliferating melanoblasts to quiescent melanocyte stem cells reveals tissue-specific regulation of the immune checkpoint protein PD-L1. In vitro, quiescence assays demonstrate that PD-L1 expression is a physiological attribute of quiescence in this cell lineage and reinforces this cell state. In vivo, a subset of quiescent McSCs is marked by PD-L1. While the overall number of McSCs decreases with age, PD-L1+ McSCs appear resistant to depletion. This phenomenon coincides with an aged McSC pool that exhibits a deeper transcriptomic quiescence. We predict that quiescent PD-L1+ stem cells retained with age may serve as cellular targets for reactivation.

2.
Clin Liver Dis (Hoboken) ; 21(4): 93-98, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37936953

ABSTRACT

1_mbm16h84Kaltura.

4.
bioRxiv ; 2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36993709

ABSTRACT

Spatially annotated single-cell datasets provide unprecedented opportunities to dissect cell-cell communication in development and disease. Heterotypic signaling includes interactions between different cell types and is well established in tissue development and spatial organization. Epithelial organization requires several different programs that are tightly regulated. Planar cell polarity (PCP) is the organization of epithelial cells along the planar axis, orthogonal to the apical-basal axis. Here, we investigate PCP factors and explore the implications of developmental regulators as malignant drivers. Utilizing cancer systems biology analysis, we derive a gene expression network for WNT-ligands (WNT) and their cognate frizzled (FZD) receptors in skin cutaneous melanoma. The profiles supported by unsupervised clustering of multiple-sequence alignments identify ligand-independent signaling and implications for metastatic progression based on the underpinning developmental spatial program. Omics studies and spatial biology connect developmental programs with oncological events and explain key spatial features of metastatic aggressiveness. Dysregulation of prominent PCP factors such as specific representatives of the WNT and FZD families in malignant melanoma recapitulates the development program of normal melanocytes but in an uncontrolled and disorganized fashion.

5.
ArXiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36911273

ABSTRACT

Spatially annotated single-cell datasets provide unprecedented opportunities to dissect cell-cell communication in development and disease. Heterotypic signaling includes interactions between different cell types and is well established in tissue development and spatial organization. Epithelial organization requires several different programs that are tightly regulated. Planar cell polarity is the organization of epithelial cells along the planar axis orthogonal to the apical-basal axis. In this study, we investigate planar cell polarity factors and explore the implications of developmental regulators as malignant drivers. Utilizing cancer systems biology analysis, we derive gene expression network for WNT-ligands (WNT) and their cognate frizzled (FZD) receptors in skin cutaneous melanoma. The profiles supported by unsupervised clustering of multiple-sequence alignments identify ligand-independent signaling and implications for metastatic progression based on the underpinning developmental spatial program. Omics studies and spatial biology connect developmental programs with oncological events and explain key spatial features of metastatic aggressiveness. Dysregulation of prominent planar cell polarity factors such specific representative of the WNT and FZD families in malignant melanoma recapitulates the development program of normal melanocytes but in an uncontrolled and disorganized fashion.

6.
Pigment Cell Melanoma Res ; 36(1): 19-32, 2023 01.
Article in English | MEDLINE | ID: mdl-36112085

ABSTRACT

Lineage-specific differentiation programs are activated by epigenetic changes in chromatin structure. Melanin-producing melanocytes maintain a gene expression program ensuring appropriate enzymatic conversion of metabolites into the pigment, melanin, and transfer to surrounding cells. During neuroectodermal development, SMARCA4 (BRG1), the catalytic subunit of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes, is essential for lineage specification. SMARCA4 is also required for development of multipotent neural crest precursors into melanoblasts, which differentiate into pigment-producing melanocytes. In addition to the catalytic domain, SMARCA4 and several SWI/SNF subunits contain bromodomains which are amenable to pharmacological inhibition. We investigated the effects of pharmacological inhibitors of SWI/SNF bromodomains on melanocyte differentiation. Strikingly, treatment of murine melanoblasts and human neonatal epidermal melanocytes with selected bromodomain inhibitors abrogated melanin synthesis and visible pigmentation. Using functional genomics, iBRD9, a small molecule selective for the bromodomain of BRD9 was found to repress pigmentation-specific gene expression. Depletion of BRD9 confirmed a requirement for expression of pigmentation genes in the differentiation program from melanoblasts into pigmented melanocytes and in melanoma cells. Chromatin immunoprecipitation assays showed that iBRD9 disrupts the occupancy of BRD9 and the catalytic subunit SMARCA4 at melanocyte-specific loci. These data indicate that BRD9 promotes melanocyte pigmentation whereas pharmacological inhibition of BRD9 is repressive.


Subject(s)
Melanins , Pigmentation Disorders , Infant, Newborn , Humans , Mice , Animals , Melanins/metabolism , Melanocytes/metabolism , Cell Differentiation , Epigenesis, Genetic , Pigmentation Disorders/metabolism , Pigmentation , DNA Helicases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism
7.
Rozhl Chir ; 101(8): 395-400, 2022.
Article in English | MEDLINE | ID: mdl-36208935

ABSTRACT

INTRODUCTION: Endovenous laser ablation (EVLA) is a recognized alternative to surgical treatment of varicose veins, although an optimal laser generator and its settings still remain a matter of debate. The aim of our study was to correlate clinical results with the theoretical advantage of the 1940nm diode laser characterized by high absorption of heat in a thin layer of coagulated tissue. METHODS: From 1/2010 to 12/2021 EVLA was performed in a total of 3529 consecutive patients with varicose veins and ultrasonographically documented superficial venous reflux of lower extremities. Three types of laser were used successively with the wavelengths of 1064 nm, 1470 nm and 1940 nm, respectively. All patients were prospectively enrolled in our registry. An early postoperative followup visit was scheduled including an assessment of venous closure; additional visits were performed only in case of complications. RESULTS: The success of venous closure did not differ (p=0.054) between the three laser types and was over 98%. The catheterbased method made it possible to perform multiple ablations in one procedure the trend was 1.08, 1.31 and 1.62. In 2021 the number of ablations per patient with the laser DL Tethys 1940 nm was 1.79. With this laser it was possible to reduce the total energy applied to one half (8 W, 5080 J/cm). The postoperative course of patients treated using the 1940nm laser was smoother - no other but the early followup visit was needed in 95.6% cases (p.


Subject(s)
Laser Therapy , Varicose Veins , Venous Insufficiency , Humans , Laser Therapy/methods , Lasers, Semiconductor/therapeutic use , Saphenous Vein/surgery , Treatment Outcome , Varicose Veins/diagnostic imaging , Varicose Veins/surgery , Venous Insufficiency/diagnostic imaging , Venous Insufficiency/surgery
8.
Sci Total Environ ; 784: 147054, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33894612

ABSTRACT

Increasing temperatures and snow scarcity pose a serious threat to ski tourism. While the impacts of climate change on ski tourism have been elaborated extensively, little is known so far on the vulnerability of winter tourism towards both internal climate variability and climate change. We use a 50-member single model large ensemble from a regional climate model to drive the physically-based snowpack model SNOWPACK for eight stations across the Swiss Alps to model daily snow depth, incorporating both natural snow conditions and including technical snow production. We make a probabilistic assessment of the vulnerability of ski tourism towards internal climate variability in a future climate by analyzing selected tourism-related snow indicators and find significant overall decrease in snow reliability in the future. Further, we show how the sensitivity towards internal climate variability differs among different tourism-related snow indicators and find that certain indicators are more vulnerable to internal climate variability than others. We show that technical snow production is an appropriate adaptation strategy to tackle risks from climate change and internal climate variability. While technical snow production can drastically reduce uncertainties related to internal climate variability, in low elevations, the technique reaches its limits to counteract global warming by the mid of the century.

9.
Rozhl Chir ; 99(7): 299-303, 2020.
Article in English | MEDLINE | ID: mdl-32972147

ABSTRACT

INTRODUCTION: Endovenous Laser Ablation (EVLA) is a common alternative to surgical treatment of varicose veins. The aim of our study was to demonstrate that laser occlusion is durable, that we can treat all patients in a one day setting, even with veins >10mm in diameter, and that multiple EVLAs can be done at the same time. METHODS: In the period from 1/2017 to 12/2019 EVLA was performed in a total of 1551 consecutive patients with varicose veins and ultrasonographically documented venous reflux. The mid-term results were evaluated in a group of patients operated from 1/2017 to 6/2017 (316 pts.). We compared a risk group that consisted of patients with veins >10mm in diameter (40 pts.) with a control group (the remaining 276 pts.). Patients with veins >10mm are traditionally considered as candidates for conventional surgery. RESULTS: The catheter-based method enabled us to perform more ablations in one procedure. In 2019 we performed 1.44 EVLA procedures per patient. There was only one postoperative follow-up visit, indicating an uncomplicated postoperative course, in 87.5% of patients of the risk group. In the control group 100% of patients had only one follow-up visit including ultrasound examination, showing an uncomplicated postoperative course (p.


Subject(s)
Laser Therapy , Varicose Veins/diagnostic imaging , Varicose Veins/surgery , Venous Insufficiency , Humans , Saphenous Vein/diagnostic imaging , Saphenous Vein/surgery , Treatment Outcome
10.
Epigenetics Chromatin ; 13(1): 14, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32151278

ABSTRACT

BACKGROUND: Pharmacologic inhibition of bromodomain and extra-terminal (BET) proteins is currently being explored as a new therapeutic approach in cancer. Some studies have also implicated BET proteins as regulators of cell identity and differentiation through their interactions with lineage-specific factors. However, the role of BET proteins has not yet been investigated in melanocyte differentiation. Melanocyte inducing transcription factor (MITF) is the master regulator of melanocyte differentiation, essential for pigmentation and melanocyte survival. In this study, we tested the hypothesis that BET proteins regulate melanocyte differentiation through interactions with MITF. RESULTS: Here we show that chemical inhibition of BET proteins prevents differentiation of unpigmented melanoblasts into pigmented melanocytes and results in de-pigmentation of differentiated melanocytes. BET inhibition also slowed cell growth, without causing cell death, increasing the number of cells in G1. Transcriptional profiling revealed that BET inhibition resulted in decreased expression of pigment-specific genes, including many MITF targets. The expression of pigment-specific genes was also down-regulated in melanoma cells, but to a lesser extent. We found that RNAi depletion of the BET family members, bromodomain-containing protein 4 (BRD4) and bromodomain-containing protein 2 (BRD2) inhibited expression of two melanin synthesis enzymes, TYR and TYRP1. Both BRD4 and BRD2 were detected on melanocyte promoters surrounding MITF-binding sites, were associated with open chromatin structure, and promoted MITF binding to these sites. Furthermore, BRD4 and BRD2 physically interacted with MITF. CONCLUSION: These findings indicate a requirement for BET proteins in the regulation of pigmentation and melanocyte differentiation. We identified changes in pigmentation specific gene expression that occur upon BET inhibition in melanoblasts, melanocytes, and melanoma cells.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Differentiation , Melanocytes/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cells, Cultured , HEK293 Cells , Humans , Melanins/biosynthesis , Melanins/genetics , Melanocytes/cytology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Promoter Regions, Genetic , Protein Binding , Transcription Factors/genetics
11.
Curr Genet Med Rep ; 7(4): 208-213, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31871830

ABSTRACT

PURPOSE OF REVIEW: We critically evaluate the future potential of machine learning (ML), deep learning (DL), and artificial intelligence (AI) in precision medicine. The goal of this work is to show progress in ML in digital health, to exemplify future needs and trends, and to identify any essential prerequisites of AI and ML for precision health. RECENT FINDINGS: High-throughput technologies are delivering growing volumes of biomedical data, such as large-scale genome-wide sequencing assays; libraries of medical images; or drug perturbation screens of healthy, developing, and diseased tissue. Multi-omics data in biomedicine is deep and complex, offering an opportunity for data-driven insights and automated disease classification. Learning from these data will open our understanding and definition of healthy baselines and disease signatures. State-of-the-art applications of deep neural networks include digital image recognition, single-cell clustering, and virtual drug screens, demonstrating breadths and power of ML in biomedicine. SUMMARY: Significantly, AI and systems biology have embraced big data challenges and may enable novel biotechnology-derived therapies to facilitate the implementation of precision medicine approaches.

12.
Nat Commun ; 10(1): 4673, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31611594

ABSTRACT

Advances in precision molecular imaging promise to transform our ability to detect, diagnose and treat disease. Here, we describe the engineering and validation of a new cystine knot peptide (knottin) that selectively recognizes human integrin αvß6 with single-digit nanomolar affinity. We solve its 3D structure by NMR and x-ray crystallography and validate leads with 3 different radiolabels in pre-clinical models of cancer. We evaluate the lead tracer's safety, biodistribution and pharmacokinetics in healthy human volunteers, and show its ability to detect multiple cancers (pancreatic, cervical and lung) in patients at two study locations. Additionally, we demonstrate that the knottin PET tracers can also detect fibrotic lung disease in idiopathic pulmonary fibrosis patients. Our results indicate that these cystine knot PET tracers may have potential utility in multiple disease states that are associated with upregulation of integrin αvß6.


Subject(s)
Antigens, Neoplasm/metabolism , Idiopathic Pulmonary Fibrosis/diagnosis , Integrins/metabolism , Neoplasms/diagnosis , Crystallography, X-Ray , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography
13.
Rozhl Chir ; 98(6): 248-251, 2019.
Article in English | MEDLINE | ID: mdl-31331181

ABSTRACT

INTRODUCTION: Catheter-Based Endovenous Laser Ablation (EVLA) is a commonly used alternative to surgical treatment of varicose veins. Recently, catheterization methods have proved to be methods of choice due to the preference of patients who value minimal invasiveness. Research of EVLA currently focuses on optimization of the procedure, which includes study of the benefits of the individual types of laser generators and the wavelengths used. In this observational study we compared our early results in a non-selected population of consecutive patients treated with two different types of lasers. METHODS: In the period from February 2010 to June 2017, EVLA was performed in a total of 1747 consecutive patients (74% were female) with venous reflux. The average vein width was 8.5 mm (525 mm). Our study sought to compare a more economical 1470nm diode laser (DL) generator (Velas 2, China) - used to operate on 630 patients - with a Nd-Yag crystal generator (Fotona - Slovenia) used in 1117 patients. All operations were performed using the same methodology, in an outpatient setting, in one specialized center. All procedures were completed in local tumescent anesthesia under peroperative ultrasound control. Postoperative sonography was performed in all patients. RESULTS: The results did not show a statistically significant difference in early closure rates (98.8% for Nd-Yag versus 99.8 for DL p-ns). Early recurrence was observed in 9 patients (15 vein segments) and managed successfully with early re-intervention and closure in all cases. The causes of incomplete closure included mainly the known risk factors (anticoagulation therapy, history of varicophlebitis). There was no correlation with larger venous diameter. In 6 patients, thrombus prolapse was observed in the deep femoral vein lumen. All cases were successfully cured after a week of low-molecular-weight heparin therapy. Only one case of low-risk pulmonary embolism was reported in a patient who failed to follow the regime recommendations. CONCLUSION: This evidence did not show a significant difference in closure reliability and the amount of complications of the endovenous laser ablation of large and small saphenous vein with a 1060nm Nd-Yag crystal compared to the more economical 1470nm diode laser generator.


Subject(s)
Catheter Ablation , Laser Therapy , Varicose Veins , Venous Insufficiency , Female , Humans , Lower Extremity , Male , Reproducibility of Results , Saphenous Vein , Treatment Outcome , Varicose Veins/therapy , Venous Insufficiency/therapy
14.
Sci Rep ; 9(1): 7696, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31118427

ABSTRACT

Dysregulation of signaling networks controlling self-renewal and migration of developmental cell lineages is closely linked to the proliferative and invasive properties of tumors. Identification of such signaling pathways and their critical regulators is vital for successful design of effective targeted therapies against neoplastic tissue growth. The neurotrophin receptor (CD271/NGFR/p75NTR) is a key regulator of the melanocytic cell lineage through its ability to mediate cell growth, survival, and differentiation. Using clinical melanoma samples, normal melanocytes and global gene expression profiling we have investigated the role of CD271 in rewiring signal transduction networks of melanoma cells during neoplastic transformation. Our analysis demonstrates that depending on the cell fate of tumor initiation vs normal development, elevated levels of CD271 can serve as a switch between proliferation/survival and differentiation/cell death. Two divergent arms of neurotrophin signaling hold the balance between positive regulators of tumor growth controlled by E2F, MYC, SREBP1 and AKT3 pathways on the one hand, and differentiation, senescence, and apoptosis controlled by TRAF6/IRAK-dependent activation of AP1 and TP53 mediated processes on the other hand. A molecular network map revealed in this study uncovers CD271 as a context-specific molecular switch between normal development and malignant transformation.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Melanocytes/metabolism , Melanoma/metabolism , Neoplasm Proteins/physiology , Nerve Tissue Proteins/physiology , Receptors, Nerve Growth Factor/physiology , Cell Survival , Cell Transformation, Neoplastic , DNA Repair , Disease Progression , Gene Regulatory Networks , Humans , Melanocytes/cytology , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcriptome
15.
Cancer Res ; 79(8): 1799-1809, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30987979

ABSTRACT

Aberrant glutamatergic signaling has been implicated in altered metabolic activity in many cancer types, including malignant melanoma. Previously, we have illustrated the role of metabotropic glutamate receptor 1 (GRM1) in neoplastic transformation of melanocytes in vitro and spontaneous metastatic melanoma in vivo. In this study, we showed that autocrine stimulation constitutively activates the GRM1 receptor and its downstream mitogenic signaling. GRM1-activated (GRM1+) melanomas exhibited significantly increased expression of glutaminase (GLS), which catalyzes the first step in the conversion of glutamine to glutamate. In cultured GRM1+ melanoma cell lines, CB-839, a potent, selective, and orally bioavailable inhibitor of GLS, suppressed cell proliferation, while riluzole, an inhibitor of glutamate release, promoted apoptotic cell death in vitro and in vivo. Combined treatment with CB-839 and riluzole treatment proved to be superior to single-agent treatment, restricting glutamate bioavailability and leading to effective suppression of tumor cell proliferation in vitro and tumor progression in vivo. Hyperactivation of GRM1 in malignant melanoma is an oncogenic driver, which acts independently of canonical melanoma proto-oncogenes, BRAF or NRAS. Overall, these results indicate that expression of GRM1 promotes a metabolic phenotype that supports increased glutamate production and autocrine glutamatergic signaling, which can be pharmacologically targeted by decreasing glutamate bioavailability and the GLS-dependent glutamine to glutamate conversion. SIGNIFICANCE: These findings demonstrate that targeting glutaminolytic glutamate bioavailability is an effective therapeutic strategy for GRM1-activated tumors.


Subject(s)
Benzeneacetamides/pharmacology , Glutamic Acid/metabolism , Glutaminase/antagonists & inhibitors , Melanoma/drug therapy , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Riluzole/pharmacology , Thiadiazoles/pharmacology , Animals , Apoptosis , Biological Availability , Cell Proliferation , Drug Therapy, Combination , Female , Humans , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Hairless , Neuroprotective Agents/pharmacology , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Proc Natl Acad Sci U S A ; 116(10): 4548-4557, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30792348

ABSTRACT

Frizzled 3 receptor (FZD3) plays an important role in the homeostasis of the neural crest and its derivatives, which give rise to pigment-synthesizing cells, melanocytes. While the role for FZD3 in specification of the melanocytic lineage from neural crest is well established, its significance in the formation of melanoma, its associated malignancy, is less understood. In this study we identified FZD3 as a critical regulator of human melanoma tumorigenesis. Down-regulation of FZD3 abrogated growth, colony-forming potential, and invasive capacity of patient-derived melanoma cells. Xenotransplantation of tumor cells with down-regulated FZD3 levels originating from melanomas carrying the BRAF(V600) mutation uniformly suppressed their capacity for tumor and metastasis formation. FZD3 knockdown leads to the down-regulation of the core cell cycle protein components (cyclins D1, E2, B1, and CDKs 1, 2, and 4) in melanomas with a hyperactive BRAF oncogene, indicating a dominant role of this receptor during melanoma pathogenesis. Enriched pathway analysis revealed that FZD3 inhibits transcriptional networks controlled by CREB5, FOXD1, and ATF3, which suppress the activity of MAPK-mediated signaling. Thus, FZD3 establishes a positive-feedback mechanism that activates MAPK signal transduction network, critical to melanoma carcinogenesis. Importantly, high levels of FZD3 mRNA were found to be correlated with melanoma advancement to metastatic stages and limited patient survival. Changes in gene-expression patterns mediated by FZD3 activity occur in the absence of nuclear ß-catenin function, thus representing an important therapeutic target for the melanoma patients whose disease progresses independent of canonical WNT signaling.


Subject(s)
Cell Proliferation/physiology , Down-Regulation , Frizzled Receptors/physiology , Melanoma/pathology , Neoplasm Metastasis , Wnt Signaling Pathway , Frizzled Receptors/genetics , Gene Expression Profiling , Humans , Melanoma/genetics , Melanoma/metabolism , Neoplasm Invasiveness
17.
Cancer ; 125(1): 18-44, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30281145

ABSTRACT

Recent progress in the treatment of advanced melanoma has led to unprecedented improvements in overall survival and, as these new melanoma treatments have been developed and deployed in the clinic, much has been learned about the natural history of the disease. Now is the time to apply that knowledge toward the design and clinical evaluation of new chemoprevention agents. Melanoma chemoprevention has the potential to reduce dramatically both the morbidity and the high costs associated with treating patients who have metastatic disease. In this work, scientific and clinical melanoma experts from the national Melanoma Prevention Working Group, composed of National Cancer Trials Network investigators, discuss research aimed at discovering and developing (or repurposing) drugs and natural products for the prevention of melanoma and propose an updated pipeline for translating the most promising agents into the clinic. The mechanism of action, preclinical data, epidemiological evidence, and results from available clinical trials are discussed for each class of compounds. Selected keratinocyte carcinoma chemoprevention studies also are considered, and a rationale for their inclusion is presented. These data are summarized in a table that lists the type and level of evidence available for each class of agents. Also included in the discussion is an assessment of additional research necessary and the likelihood that a given compound may be a suitable candidate for a phase 3 clinical trial within the next 5 years.


Subject(s)
Melanoma/prevention & control , Radiation-Protective Agents/therapeutic use , Skin Neoplasms/prevention & control , Animals , Anticarcinogenic Agents/therapeutic use , Chemoprevention , Clinical Trials, Phase III as Topic , Drug Development , Drug Repositioning , Female , Humans , Male , Skin Neoplasms/drug therapy
18.
Pigment Cell Melanoma Res ; 31(6): 728-735, 2018 11.
Article in English | MEDLINE | ID: mdl-30281213

ABSTRACT

In this perspective, we identify emerging frontiers in clinical and basic research of melanocyte biology and its associated biomedical disciplines. We describe challenges and opportunities in clinical and basic research of normal and diseased melanocytes that impact current approaches to research in melanoma and the dermatological sciences. We focus on four themes: (1) clinical melanoma research, (2) basic melanoma research, (3) clinical dermatology, and (4) basic pigment cell research, with the goal of outlining current highlights, challenges, and frontiers associated with pigmentation and melanocyte biology. Significantly, this document encapsulates important advances in melanocyte and melanoma research including emerging frontiers in melanoma immunotherapy, medical and surgical oncology, dermatology, vitiligo, albinism, genomics and systems biology, epidemiology, pigment biophysics and chemistry, and evolution.


Subject(s)
Biomedical Research , Melanocytes/pathology , Melanoma/pathology , Animals , Disease Models, Animal , Drug Resistance, Neoplasm , Humans , Melanoma/epidemiology , Melanoma/prevention & control , Melanoma/therapy , Pigmentation
19.
J Transl Med ; 16(1): 252, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30285864

ABSTRACT

The International Federation of Pigment Cell Societies (IFPCS) held its XXIII triennial International Pigment Cell Conference (IPCC) in Denver, Colorado in August 2017. The goal of the summit was to provide a venue promoting a vibrant interchange among leading basic and clinical researchers working on leading-edge aspects of melanocyte biology and disease. The philosophy of the meeting, entitled Breakthroughs in Pigment Cell and Melanoma Research, was to deliver a comprehensive program in an inclusive environment fostering scientific exchange and building new academic bridges. This document provides an outlook on the history, accomplishments, and sustainability of the pigment cell and melanoma research community. Shared progress in the understanding of cellular homeostasis of pigment cells but also clinical successes and hurdles in the treatment of melanoma and dermatological disorders continue to drive future research activities. A sustainable direction of the societies creates an international forum identifying key areas of imminent needs in laboratory research and clinical care and ensures the future of this vibrant, diverse and unique research community at the same time. Important advances showcase wealth and breadth of the field in melanocyte and melanoma research and include emerging frontiers in melanoma immunotherapy, medical and surgical oncology, dermatology, vitiligo, albinism, genomics and systems biology, precision bench-to-bedside approaches, epidemiology, pigment biophysics and chemistry, and evolution. This report recapitulates highlights of the federate meeting agenda designed to advance clinical and basic research frontiers from melanoma and dermatological sciences followed by a historical perspective of the associated societies and conferences.


Subject(s)
Internationality , Melanocytes/pathology , Awards and Prizes , Humans
20.
BMC Syst Biol ; 12(1): 33, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29615030

ABSTRACT

BACKGROUND: Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma. METHODS: The cellular model evolved in response to clinical dosage of the BRAF inhibitor, vemurafenib, PLX4032. We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis, MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway rewiring was uncovered to be based on non-genomic adaptation and validated in two distinct melanoma models, SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential. RESULTS: Downregulation of dual specific phosphatases, tumor suppressors, and negative MAPK regulators reengages mitogenic signaling. Upregulation of growth factors, cytokines, and cognate receptors triggers signaling pathways circumventing BRAF blockage. Further, changes in amino acid and one-carbon metabolism support cellular proliferation despite MAPK inhibitor treatment. In addition, treatment-resistant cells upregulate pigmentation and melanogenesis, pathways which partially overlap with MAPK signaling. Upstream regulator analysis discovered significant perturbation in oncogenic forkhead box and hypoxia inducible factor family transcription factors. CONCLUSIONS: The established cellular models offer mechanistic insight into cellular changes and therapeutic targets under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major rewiring while acquiring inhibitor resistance. The outcome of this transcriptional plasticity is selection for a set of transcriptional master regulators, which circumvent upstream targeted kinases and provide alternative routes of mitogenic activation. A fine-woven network of redundant signals maintains similar effector genes allowing for tumor cell survival and malignant progression in therapy-resistant cancer.


Subject(s)
Melanoma/enzymology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Systems Biology , Cell Line, Tumor , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Transcription Factors/metabolism , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL