Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Angew Chem Int Ed Engl ; : e202414652, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363702

ABSTRACT

Several copper-ligands, including 1,10-phenanthroline (Phen), have been investigated for anticancer purposes based on their capacity to bind excess copper (Cu) in cancer tissues and form redox active complexes able to catalyse the formation of reactive oxygen species (ROS), ultimately leading to oxidative stress and cell death. Glutathione (GSH) is a critical compound as it is highly concentrated intracellularly and can reduce and dissociate copper(II) from the ligand forming poorly redox-active copper(I)-thiolate clusters. Here we report that Cu-Phen2  speciation evolves in physiologically relevant GSH concentrations. Experimental and computational experiments suggest that at pH 7.4 mostly copper(I)-GSH clusters are formed, but a minor species of copper(I) bound to one Phen and forming ternary complexes with GSH (GS-Cu-Phen) is the redox active species, oxidizing quite efficiently GSH to GSSG and forming HO• radicals. This minor active species becomes more populated at lower pH, such as typical lysosomal pH 5, resulting in faster GSH oxidation and HO• production. Consistently, cell culture studies showed lower toxicity of Cu-Phen2 upon inhibition of lysosomal acidification. Overall, this study underscores that sub-cellular localisation can considerably influence the speciation of Cu-based drugs and that minor species can be the most redox- and biologically- active.

2.
ACS Med Chem Lett ; 15(8): 1376-1385, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39140073

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disorder that significantly contributes to dementia. The lack of effective therapeutic interventions presents a significant challenge to global health. We have developed a set of short peptides (PNGln) conjugated with a dual-functional fluorophoric amino acid (NGln). The lead peptide, P2NGln, displays a high affinity for Cu2+, maintaining the metal ion in a redox-inactive state. This mitigates the cytotoxicity generated by reactive oxygen species (ROS), which are produced by Cu2+ under the reductive conditions of Asc and Aß16 or Aß42. Furthermore, P2NGln inhibits both Cu-dependent and -independent fibrillation of Aß42, along with the subsequent toxicity induced by Aß42. In addition, P2NGln exhibits inhibitory effects on the production of lipopolysaccharide (LPS)-induced ROS and reactive nitrogen species (RNS) in microglial cells. In vitro and cellular studies indicate that P2NGln could significantly reduce Aß-Cu2+-induced ROS production, amyloid toxicity, and neuroinflammation, offering an innovative strategy against Alzheimer's disease.

3.
Proteins ; 92(11): 1318-1328, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38980225

ABSTRACT

Understanding the sequence-structure relationship in protein is of fundamental interest, but has practical applications such as the rational design of peptides and proteins. This relationship in the Type I left-handed ß-helix containing proteins is updated and revisited in this study. Analyzing the available experimental structures in the Protein Data Bank, we could describe, further in detail, the structural features that are important for the stability of this fold, as well as its nucleation and termination. This study is meant to complete previous work, as it provides a separate analysis of the N-terminal and C-terminal rungs of the helix. Particular sequence motifs of these rungs are described along with the structural element they form.


Subject(s)
Amino Acid Sequence , Databases, Protein , Models, Molecular , Proteins , Proteins/chemistry , Protein Folding , Protein Structure, Secondary
4.
Front Mol Biosci ; 11: 1355963, 2024.
Article in English | MEDLINE | ID: mdl-38645276

ABSTRACT

CPPs, or Cell-Penetrating Peptides, offer invaluable utility in disease treatment due to their ability to transport various therapeutic molecules across cellular membranes. Their unique characteristics, such as biocompatibility and low immunogenicity, make them ideal candidates for delivering drugs, genes, or imaging agents directly into cells. This targeted delivery enhances treatment efficacy while minimizing systemic side effects. CPPs exhibit versatility, crossing biological barriers and reaching intracellular targets that conventional drugs struggle to access. This capability holds promise in treating a wide array of diseases, including cancer, neurodegenerative disorders, and infectious diseases, offering a potent avenue for innovative and targeted therapies, yet their precise mechanism of cell entry is far from being fully understood. In order to correct Cu dysregulation found in various pathologies such as Alzheimer disease, we have recently conceived a peptide Cu(II) shuttle, based on the αR5W4 CPP, which, when bound to Cu(II), is able to readily enter a neurosecretory cell model, and release bioavailable Cu in cells. Furthermore, this shuttle has the capacity to protect cells in culture against oxidative stress-induced damage which occurs when Cu binds to the Aß peptide. The aim of this study was therefore to characterize the cell entry route used by this shuttle and determine in which compartment Cu is released. Pharmacological treatments, siRNA silencing and colocalization experiments with GFP-Rab fusion proteins, indicate that the shuttle is internalized by an ATP-dependent endocytosis pathway involving both Rab5 and Rab14 endosomes route and suggest an early release of Cu from the shuttle.

5.
Metallomics ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38614957

ABSTRACT

Metal ion-catalyzed overproduction of reactive oxygen species (ROS) is believed to contribute significantly to oxidative stress and be involved in several biological processes, from immune defense to development of diseases. Among the essential metal ions, copper is one of the most efficient catalysts in ROS production in the presence of O2 and a physiological reducing agent such as ascorbate. To control this chemistry, Cu ions are tightly coordinated to biomolecules. Free or loosely bound Cu ions are generally avoided to prevent their toxicity. In the present report, we aim to find stable Cu-ligand complexes (Cu-L) that can efficiently catalyze the production of ROS in the presence of ascorbate under aerobic conditions. Thermodynamic stability would be needed to avoid dissociation in the biological environment, and high ROS catalysis is of interest for applications as antimicrobial or anticancer agents. A series of Cu complexes with the well-known tripodal and tetradentate ligands containing a central amine linked to three pyridyl-alkyl arms of different lengths were investigated. Two of them with mixed arm length showed a higher catalytic activity in the oxidation of ascorbate and subsequent ROS production than Cu salts in buffer, which is an unprecedented result. Despite these high catalytic activities, no increased antimicrobial activity toward Escherichia coli or cytotoxicity against eukaryotic AGS cells in culture related to Cu-L-based ROS production could be observed. The potential reasons for discrepancy between in vitro and in cell data are discussed.


Subject(s)
Copper , Reactive Oxygen Species , Copper/metabolism , Copper/chemistry , Reactive Oxygen Species/metabolism , Ligands , Catalysis , Humans , Escherichia coli/metabolism , Escherichia coli/drug effects , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Ascorbic Acid/metabolism , Ascorbic Acid/chemistry , Oxidation-Reduction
6.
Chemistry ; 30(21): e202304212, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38408264

ABSTRACT

Cu-thiosemicarbazones have been intensively investigated for their application in cancer therapy or as antimicrobials. Copper(II)-di-2-pyridylketone-4,4-dimethyl-thiosemicarbazone (CuII-Dp44mT) showed anticancer activity in the submicromolar concentration range in cell culture. The interaction of CuII-Dp44mT with thiols leading to their depletion or inhibition was proposed to be involved in this activity. Indeed, CuII-Dp44mT can catalyze the oxidation of thiols although with slow kinetics. The present work aims to obtain insights into the catalytic activity and selectivity of CuII-Dp44mT toward the oxidation of different biologically relevant thiols. Reduced glutathione (GSH), L-cysteine (Cys), N-acetylcysteine (NAC), D-penicillamine (D-Pen), and the two model proteins glutaredoxin (Grx) and thioredoxin (Trx) were investigated. CuII-Dp44mT catalyzed the oxidation of these thiols with different kinetics, with rates in the following order D-Pen>Cys≫NAC>GSH and Trx>Grx. CuII-Dp44mT was more efficient than CuII chloride for the oxidation of NAC and GSH, but not D-Pen and Cys. In mixtures of biologically relevant concentrations of GSH and either Cys, Trx, or Grx, the oxidation kinetics and spectral properties were similar to that of GSH alone, indicating that the interaction of these thiols with CuII-Dp44mT is dominated by GSH. Hence GSH could protect other thiols against potential deleterious oxidation by CuII-Dp44mT.


Subject(s)
Copper , Thiosemicarbazones , Copper/metabolism , Sulfhydryl Compounds , Oxidation-Reduction , Glutathione/metabolism , Penicillamine/metabolism , Acetylcysteine/metabolism
7.
Dalton Trans ; 52(38): 13758-13768, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37720931

ABSTRACT

The chelator diacetyl-bis(N4-methylthiosemicarbazone) (ATSM) and its complexes with CuII and ZnII are becoming increasingly investigated for medical applications such as PET imaging for anti-tumour therapy and the treatment of amyotrophic lateral sclerosis. However, the solubility in water of both the ligand and the complexes presents certain limitations for in vitro studies. Moreover, the stability of the CuII and ZnII complexes and their metal exchange reaction against the potential biological competitor human serum albumin (HSA) has not been studied in depth. In this work it was observed that the ATSM with an added carboxylic group into the structure increases its solubility in aqueous solutions without altering the coordination mode and the conjugated system of the ligand. The poorly water-soluble CuII- and ZnII-ATSM complexes were prevented from precipitating due to the binding to HSA. Both HSA and ATSM show a similar thermodynamic affinity for ZnII. Finally, the CuII-competition experiments with EDTA and the water-soluble ATSM ligands yielded an apparent log Kd at pH 7.4 of about -19. When ATSM was added to CuII- and ZnII-loaded HSA, withdrawing of ZnII was kinetically favoured, but this metal is slowly substituted by the CuII afterwards taken from HSA so that this protein could be considered as a source of CuII for ATSM.


Subject(s)
Coordination Complexes , Organometallic Compounds , Thiosemicarbazones , Humans , Organometallic Compounds/chemistry , Diacetyl , Serum Albumin, Human , Ligands , Zinc , Thiosemicarbazones/chemistry , Copper Radioisotopes , Radiopharmaceuticals
8.
Metallomics ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37505477

ABSTRACT

Thiosemicarbazones (TSCs) are a class of biologically active compounds with promising anticancer activity. Their typical mechanism, especially of the clinically far developed representative Triapine, is chelation of iron (Fe), with the Fe-containing enzyme ribonucleotide reductase as primary intracellular target. However, for the subclass of terminally disubstituted, nanomolar-active derivatives like Dp44mT and Me2NNMe2, recent findings suggest that the chelation, stability, and reduction properties of the copper(II) (Cu) complexes are essential for their modes of action. Consequently, it is important to elucidate whether blood serum Cu(II) is a potential metal source for these TSCs. To gain more insights, the interaction of Triapine, Dp44mT or Me2NNMe2 with purified human serum albumin (HSA) as the main pool of labile Cu(II) was investigated by UV-vis and electron paramagnetic resonance measurements. Subsequently, a size-exclusion chromatography inductively coupled plasma mass spectrometry method for the differentiation of Cu species in serum was developed, especially separating the non-labile Cu enzyme ceruloplasmin from HSA. The results indicate that the TSCs specifically chelate copper from the N-terminal Cu-binding site of HSA. Furthermore, the Cu(II)-TSC complexes were shown to form ternary HSA conjugates, most likely via histidine. Noteworthy, Fe-chelation from transferrin was not overserved, even not for Triapine. In summary, the labile Cu pool of HSA is a potential source for Cu-TSC complex formation and, consequently, distinctly influences the anticancer activity and pharmacological behavior of TSCs.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Humans , Serum Albumin, Human , Copper/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Chelating Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
9.
Metallomics ; 15(7)2023 07 10.
Article in English | MEDLINE | ID: mdl-37353903

ABSTRACT

Copper (Cu) is essential for most organisms, but it can be poisonous in excess, through mechanisms such as protein aggregation, trans-metallation, and oxidative stress. The latter could implicate the formation of potentially harmful reactive oxygen species (O2•-, H2O2, and HO•) via the redox cycling between Cu(II)/Cu(I) states in the presence of dioxygen and physiological reducing agents such as ascorbate (AscH), cysteine (Cys), and the tripeptide glutathione (GSH). Although the reactivity of Cu with these reductants has been previously investigated, the reactions taking place in a more physiologically relevant mixture of these biomolecules are not known. Hence, we report here on the reactivity of Cu with binary and ternary mixtures of AscH, Cys, and GSH. By measuring AscH and thiol oxidation, as well as HO• formation, we show that Cu reacts preferentially with GSH and Cys, halting AscH oxidation and also HO• release. This could be explained by the formation of Cu-thiolate clusters with both GSH and, as we first demonstrate here, Cys. Moreover, we observed a remarkable acceleration of Cu-catalyzed GSH oxidation in the presence of Cys. We provide evidence that both thiol-disulfide exchange and the generated H2O2 contribute to this effect. Based on these findings, we speculate that Cu-induced oxidative stress may be mainly driven by GSH depletion and/or protein disulfide formation rather than by HO• and envision a synergistic effect of Cys on Cu toxicity.


Subject(s)
Copper , Cysteine , Reactive Oxygen Species/metabolism , Copper/metabolism , Cysteine/chemistry , Hydrogen Peroxide/metabolism , Glutathione/metabolism , Ascorbic Acid/metabolism , Oxidation-Reduction , Sulfhydryl Compounds/chemistry
10.
Inorg Chem ; 62(24): 9429-9439, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37269299

ABSTRACT

Cu chelation in biological systems is of interest as a tool to study the metabolism of this essential metal or for applications in the case of diseases with a systemic or local Cu overload, such as Wilson's or Alzheimer's disease. The choice of the chelating agent must meet several criteria. Among others, affinities and kinetics of metal binding and related metal selectivity are important parameters of the chelators to consider. Here, we report on the synthesis and characterization of Cu-binding properties of two ligands, L1 and L2, derivatives of the well-known peptidic CuII-binding motif Xxx-Zzz-His (also called ATCUN), where CuII is bound to the N-terminal amine, two amidates, and the imidazole. In either L, the N-terminal amine was replaced with a pyridine, and for L2, one amide was replaced with an amine compared to Xxx-Zzz-His. In particular, L2 showed several interesting features, including a CuII-binding affinity with a log KDapp = -16.0 similar to that of EDTA and stronger than all reported ATCUN peptides. L2 showed high selectivity for CuII over ZnII and other essential metal ions, even under the challenging conditions of the presence of human serum albumin. Further, L2 showed fast and efficient CuII redox silencing qualities and CuII-L2 was stable in the presence of mM GSH concentrations. Benefitting the fact that L2 can be easily elongated on its peptide part by standard SPPS to add other functions, L2 has attractive properties as a CuII chelator for application in biological systems.


Subject(s)
Chelating Agents , Peptides , Humans , Ligands , Peptides/metabolism , Oxidation-Reduction , Chelating Agents/chemistry , Amines , Copper/chemistry
11.
Angew Chem Int Ed Engl ; 62(25): e202217791, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-36869617

ABSTRACT

The redox activity of Cu ions bound to the amyloid-ß (Aß) peptide is implicated as a source of oxidative stress in the context of Alzheimer's disease. In order to explain the efficient redox cycling between CuII -Aß (distorted square-pyramidal) and CuI -Aß (digonal) resting states, the existence of a low-populated "in-between" state, prone to bind Cu in both oxidation states, has been postulated. Here, we exploited the partial X-ray induced photoreduction at 10 K, followed by a thermal relaxation at 200 K, to trap and characterize by X-ray Absorption Spectroscopy (XAS) a partially reduced Cu-Aß1-16 species different from the resting states. Remarkably, the XAS spectrum is well-fitted by a previously proposed model of the "in-between" state, hence providing the first direct spectroscopic characterization of an intermediate state. The present approach could be used to explore and identify the catalytic intermediates of other relevant metal complexes.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Copper/chemistry , X-Rays , Alzheimer Disease/metabolism , Oxidation-Reduction , X-Ray Absorption Spectroscopy
12.
Dalton Trans ; 52(8): 2197-2208, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36734607

ABSTRACT

Metal ions play a very important role in nature and their homeostasis is crucial. A lot of metal-related chemical research activities are ongoing that concern metal-based drugs or tools, such as chelation therapy, metal- and metabolite sensors, metallo-drugs and prodrugs, PET and MRI imaging agents, etc. In most of these cases, the applied chelator/ligand (L) or metal-ligand complex (M-L) has at least to pass the blood plasma to reach the target. Hence it is exposed to several metal-binding proteins (mainly serum albumin and transferrin) and to all essential metal ions (zinc, copper, iron, etc.). This holds also for studies in cultured cells when fetal calf serum is used in the medium. There is a risk that the applied compound (L or M-L) in the serum is transformed into a different entity, due to trans-metallation and/or ligand exchange reactions. This depends on the thermodynamics and kinetics. For kinetically-labile complexes, the complex stability with all the ligands and all metal ions present in serum is decisive in evaluating the thermodynamic driving force towards a certain fate of the chelator or metal-ligand complex. To consider that, an integrative view is needed on the stability constants, by taking into account all the metal ions present and all the main proteins to which they are bound, as well as the non-occupied metal binding site in proteins. Only then, a realistic estimation of the complex stability, and hence its potential fate, can be done. This perspective aims to provide a simple approach to estimate the thermodynamic stability of labile metal-ligand complexes in a blood plasma/serum environment. It gives a guideline to obtain an estimation of the plasma and serum complex stability and metal selectivity starting from the chemical stability constants of metal-ligand complexes. Although of high importance, it does not focus on the more complex kinetic aspects of metal-transfer reactions. The perspective should help for a better design of such compounds, to perform test tube assays which are relevant to the conditions in the plasma/serum and to be aware of the importance of ternary complexes, kinetics and competition experiments.


Subject(s)
Chelating Agents , Coordination Complexes , Chelating Agents/chemistry , Serum , Ligands , Thumb , Metals/metabolism , Thermodynamics , Coordination Complexes/chemistry , Transferrin/metabolism , Plasma/metabolism , Ions/chemistry
13.
Inorg Chem ; 62(9): 3957-3964, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36802558

ABSTRACT

α-Pyridyl thiosemicarbazones (TSC) such as Triapine (3AP) and Dp44mT are a promising class of anticancer agents. Contrary to Triapine, Dp44mT showed a pronounced synergism with CuII, which may be due to the generation of reactive oxygen species (ROS) by Dp44mT-bound CuII ions. However, in the intracellular environment, CuII complexes have to cope with glutathione (GSH), a relevant CuII reductant and CuI-chelator. Here, aiming at rationalizing the different biological activity of Triapine and Dp44mT, we first evaluated the ROS production by their CuII-complexes in the presence of GSH, showing that CuII-Dp44mT is a better catalyst than CuII-3AP. Furthermore, we performed density functional theory (DFT) calculations, which suggest that a different hard/soft character of the complexes could account for their different reactivity with GSH.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Reducing Agents , Reactive Oxygen Species , Ligands , Glutathione , Copper , Cell Line, Tumor
14.
Chem Sci ; 13(40): 11829-11840, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36320914

ABSTRACT

Copper (Cu) in its ionic forms is an essential element for mammals and its homeostasis is tightly controlled. Accordingly, Cu-dyshomeostasis can be lethal as is the case in the well-established genetic Wilson's and Menkes diseases. In Alzheimer's disease (AD), Cu-accumulation occurs in amyloid plaques, where it is bound to the amyloid-beta peptide (Aß). In vitro, Cu-Aß is competent to catalyze the production of reactive oxygen species (ROS) in the presence of ascorbate under aerobic conditions, and hence Cu-Aß is believed to contribute to the oxidative stress in AD. Several molecules that can recover extracellular Cu from Aß and transport it back into cells with beneficial effects in cell culture and transgenic AD models were identified. However, all the Cu-shuttles currently available are not satisfactory due to various potential limitations including ion selectivity and toxicity. Hence, we designed a novel peptide-based Cu shuttle with the following properties: (i) it contains a Cu(ii)-binding motif that is very selective to Cu(ii) over all other essential metal ions; (ii) it is tagged with a fluorophore sensitive to Cu(ii)-binding and release; (iii) it is made of a peptide platform, which is very versatile to add new functions. The work presented here reports on the characterization of AKH-αR5W4NBD, which is able to transport Cu ions selectively into PC12 cells and the imported Cu appeared bioavailable, likely via reductive release induced by glutathione. Moreover, AKH-αR5W4NBD was able to withdraw Cu from the Aß1-16 peptide and consequently inhibited the Cu-Aß based reactive oxygen species production and related cell toxicity. Hence, AKH-αR5W4NBD could be a valuable new tool for Cu-transport into cells and suitable for mechanistic studies in cell culture, with potential applications in restoring Cu-homeostasis in Cu-related diseases such as AD.

15.
Biomolecules ; 12(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36291536

ABSTRACT

The progressive, neurodegenerative Alzheimer's disease (AD) is the most widespread dementia. Due to the ageing of the population and the current lack of molecules able to prevent or stop the disease, AD will be even more impactful for society in the future. AD is a multifactorial disease, and, among other factors, metal ions have been regarded as potential therapeutic targets. This is the case for the redox-competent Cu ions involved in the production of reactive oxygen species (ROS) when bound to the Alzheimer-related Aß peptide, a process that contributes to the overall oxidative stress and inflammation observed in AD. Here, we made use of peptide ligands to stop the Cu(Aß)-induced ROS production and we showed why the AHH sequence is fully appropriate, while the two parents, AH and AAH, are not. The AHH peptide keeps its beneficial ability against Cu(Aß)-induced ROS, even in the presence of ZnII-competing ions and other biologically relevant ions. The detailed kinetic mechanism by which AHH could exert its action against Cu(Aß)-induced ROS is also proposed.


Subject(s)
Alzheimer Disease , Copper , Humans , Copper/chemistry , Amyloid beta-Peptides/metabolism , Reactive Oxygen Species/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Ligands , Oxidation-Reduction , Ions
16.
J Am Chem Soc ; 144(32): 14758-14768, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35929814

ABSTRACT

Glutathione (GSH) is the most abundant thiol in mammalian cells and plays a crucial role in maintaining redox cellular homeostasis. The thiols of two GSH molecules can be oxidized to the disulfide GSSG. The cytosolic GSH/GSSG ratio is very high (>100), and its reduction can lead to apoptosis or necrosis, which are of interest in cancer research. CuII ions are very efficient oxidants of thiols, but with an excess of GSH, CuIn(GS)m clusters are formed, in which CuI is very slowly reoxidized by O2 at pH 7.4 and even more slowly at lower pH. Here, the aerobic oxidation of GSH by CuII was investigated at different pH values in the presence of the anticancer thiosemicarbazone Dp44mT, which accumulates in lysosomes and induces lysosomal membrane permeabilization in a Cu-dependent manner. The results showed that CuII-Dp44mT catalyzes GSH oxidation faster than CuII alone at pH 7.4 and hence accelerates the production of very reactive hydroxyl radicals. Moreover, GSH oxidation and hydroxyl radical production by CuII-Dp44mT were accelerated at the acidic pH found in lysosomes. To decipher this unusually faster thiol oxidation at lower pH, density functional theory (DFT) calculations, electrochemical and spectroscopic studies were performed. The results suggest that the acceleration is due to the protonation of CuII-Dp44mT on the hydrazinic nitrogen, which favors the rate-limiting reduction step without subsequent dissociation of the CuI intermediate. Furthermore, preliminary biological studies in cell culture using the proton pump inhibitor bafilomycin A1 indicated that the lysosomal pH plays a role in the activity of CuII-Dp44mT.


Subject(s)
Copper , Thiosemicarbazones , Animals , Catalysis , Copper/chemistry , Glutathione/chemistry , Glutathione Disulfide/chemistry , Glutathione Disulfide/metabolism , Hydrogen-Ion Concentration , Mammals/metabolism , Oxidation-Reduction , Sulfhydryl Compounds/chemistry , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology
17.
mBio ; 13(2): e0325121, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35289645

ABSTRACT

Copper is well known for its antimicrobial and antiviral properties. Under aerobic conditions, copper toxicity relies in part on the production of reactive oxygen species (ROS), especially in the periplasmic compartment. However, copper is significantly more toxic under anaerobic conditions, in which ROS cannot be produced. This toxicity has been proposed to arise from the inactivation of proteins through mismetallations. Here, using the bacterium Escherichia coli, we discovered that copper treatment under anaerobic conditions leads to a significant increase in protein aggregation. In vitro experiments using E. coli lysates and tightly controlled redox conditions confirmed that treatment with Cu+ under anaerobic conditions leads to severe ROS-independent protein aggregation. Proteomic analysis of aggregated proteins revealed an enrichment of cysteine- and histidine-containing proteins in the Cu+-treated samples, suggesting that nonspecific interactions of Cu+ with these residues are likely responsible for the observed protein aggregation. In addition, E. coli strains lacking the cytosolic chaperone DnaK or trigger factor are highly sensitive to copper stress. These results reveal that bacteria rely on these chaperone systems to protect themselves against Cu-mediated protein aggregation and further support our finding that Cu toxicity is related to Cu-induced protein aggregation. Overall, our work provides new insights into the mechanism of Cu toxicity and the defense mechanisms that bacteria employ to survive. IMPORTANCE With the increase of antibiotic drug resistance, alternative antibacterial treatment strategies are needed. Copper is a well-known antimicrobial and antiviral agent; however, the underlying molecular mechanisms by which copper causes cell death are not yet fully understood. Herein, we report the finding that Cu+, the physiologically relevant copper species in bacteria, causes widespread protein aggregation. We demonstrate that the molecular chaperones DnaK and trigger factor protect bacteria against Cu-induced cell death, highlighting, for the first time, the central role of these chaperones under Cu+ stress. Our studies reveal Cu-induced protein aggregation to be a central mechanism of Cu toxicity, a finding that will serve to guide future mechanistic studies and drug development.


Subject(s)
Copper , Protein Aggregates , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Copper/metabolism , Copper/toxicity , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Chaperones/metabolism , Proteomics , Reactive Oxygen Species/metabolism
18.
J Alzheimers Dis ; 83(1): 23-41, 2021.
Article in English | MEDLINE | ID: mdl-34219710

ABSTRACT

The cause of Alzheimer's disease (AD) is incompletely defined. To date, no mono-causal treatment has so far reached its primary clinical endpoints, probably due to the complexity and diverse neuropathology contributing to the neurodegenerative process. In the present paper, we describe the plausible etiological role of copper (Cu) imbalance in the disease. Cu imbalance is strongly associated with neurodegeneration in dementia, but a complete biochemical etiology consistent with the clinical, chemical, and genetic data is required to support a causative association, rather than just correlation with disease. We hypothesize that a Cu imbalance in the aging human brain evolves as a gradual shift from bound metal ion pools, associated with both loss of energy production and antioxidant function, to pools of loosely bound metal ions, involved in gain-of-function oxidative stress, a shift that may be aggravated by chemical aging. We explain how this may cause mitochondrial deficits, energy depletion of high-energy demanding neurons, and aggravated protein misfolding/oligomerization to produce different clinical consequences shaped by the severity of risk factors, additional comorbidities, and combinations with other types of pathology. Cu imbalance should be viewed and integrated with concomitant genetic risk factors, aging, metabolic abnormalities, energetic deficits, neuroinflammation, and the relation to tau, prion proteins, α-synuclein, TAR DNA binding protein-43 (TDP-43) as well as systemic comorbidity. Specifically, the Amyloid Hypothesis is strongly intertwined with Cu imbalance because amyloid-ß protein precursor (AßPP)/Aß are probable Cu/Zn binding proteins with a potential role as natural Cu/Zn buffering proteins (loss of function), and via the plausible pathogenic role of Cu-Aß.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloidogenic Proteins/metabolism , Brain/pathology , Copper/metabolism , Alzheimer Disease/metabolism , Antioxidants/metabolism , Copper/adverse effects , Humans , Ions , Metals/metabolism , Oxidative Stress
19.
J Inorg Biochem ; 221: 111478, 2021 08.
Article in English | MEDLINE | ID: mdl-33975250

ABSTRACT

The measurement of labile CuII in biological samples is fundamental for understanding Cu metabolism and has been emerging as a promising diagnostic marker for Cu-related pathologies such as Wilson's and Alzheimer's diseases. The use of fluorescent chelators may be useful to circumvent separation steps employed by current methods. For this purpose, we recently designed a selective and suited-affinity turn-off luminescent probe based on a peptide bearing the CuII-binding Xxx-Zzz-His (Amino-Terminal CuII- and NiII-binding, ATCUN) motif and a TbIII-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) complex. Here, we present an analogue probe bearing the ATCUN motif variant Xxx-His-His. This probe showed much faster response in biologically-relevant media and higher stability than the previous motif at low pH. These features could be beneficial to the measurement of dynamic CuII fluctuations and the application in slightly acidic media, such as urine.


Subject(s)
Chelating Agents/chemistry , Copper/analysis , Luminescent Proteins/chemistry , Peptides/chemistry , Amino Acid Motifs , Copper/chemistry , Hydrogen-Ion Concentration , Kinetics , Limit of Detection , Luminescence , Luminescent Measurements
20.
Chem Rev ; 121(4): 2545-2647, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33543942

ABSTRACT

Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aß, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Neurodegenerative Diseases/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Models, Molecular , Neurodegenerative Diseases/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregation, Pathological , Proteostasis Deficiencies/metabolism , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , tau Proteins/chemistry , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL