Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Environ Res ; 260: 119583, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992759

ABSTRACT

Lead (Pb) is a global contaminant associated with multiple adverse health effects. Humans are especially vulnerable during critical developmental stages. During pregnancy, exposure to Pb can occur through diet and release from maternal bones. Apolipoprotein E gene (APOE) variants (ɛ2, ɛ3, ɛ4 alleles) may influence sex steroid hormones, bone metabolism, and Pb kinetics. We examined the interplay among maternal APOE (mAPOE) genotypes, fetal sex, parity, and Pb in maternal and cord blood (mB-Pb, CB-Pb) using linear regression models. Our study involved 817 pregnant women and 772 newborns with measured adequate levels of zinc and selenium. We compared carriers of the ε2 and ε4 alleles to those with the ε3/ε3 genotype. The geometric means (range) of mB-Pb and CB-Pb were 11.1 (3.58-87.6) and 9.31 (1.82-47.0) ng/g, respectively. In cases with female fetuses, the maternal mAPOE ε2 allele was associated with higher, while the mAPOE ε4 allele was associated with lower mB-Pb and CB-Pb levels. Nulliparity increased the strength of the observed associations. These findings highlight the significance of mAPOE genetics, fetal sex, and parity in prenatal Pb kinetics. Notably, the maternal ε2 allele may increase the risk of Pb exposure.

2.
Int J Hyg Environ Health ; 256: 114315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168581

ABSTRACT

The genetic susceptibility to low-level lead (Pb) exposure in general populations has been poorly investigated and is limited to the single nucleotide polymorphism (SNP) rs1800435 in the delta-aminolevulinic acid dehydratase gene (ALAD). This study explored associations between ten selected ALAD SNPs with Pb concentrations in blood (BPb) and urine (UPb) among 281 men aged 18-49 years from Slovenia, including 20 individuals residing in a Pb-contaminated area. The geometric mean (range) of BPb and UPb were 19.6 (3.86-84.7) µg/L and 0.69 (0.09-3.82) µg/L SG, respectively. The possible genetic influence was assessed by examining SNP haplotypes, individual SNPs, and the combination of two SNPs using multiple linear regression analyses. While no significant associations were found for haplotypes, the presence of variant alleles of rs1800435 and rs1805312 resulted in an 11% and 13% decrease in BPb, respectively, while the presence of variant allele of rs1139488 (homozygous only) exhibited significant 20% increase in BPb, respectively. Additionally, variant allele of rs1800435 resulted in lower UPb. Individual SNPs in the model explained only around 1 additional percentage point of BPb variability. In contrast, combination analyses identified six combinations of two SNPs, which significantly explained 3-22 additional percentage points of BPb variability, with the highest explanatory power observed for the rs1800435-rs1139488 and rs1139488-rs1805313 combinations. Moreover, excluding participants from the Pb-contaminated area indicated that exposure level influenced SNPs-Pb associations. Our results confirm the importance of the ALAD gene in Pb kinetics even at low exposure levels. Additionally, we demonstrated that identifying individuals with specific combinations of ALAD SNPs explained a larger part of Pb variability, suggesting that these combinations, pending confirmation in other populations and further evaluation through mechanistic studies, may serve as superior susceptibility biomarker in Pb exposure compared to individual SNPs.


Subject(s)
Lead , Porphobilinogen Synthase , Male , Humans , Porphobilinogen Synthase/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Biomarkers
3.
Clin Chem Lab Med ; 62(5): 946-957, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38008765

ABSTRACT

OBJECTIVES: The aim of the present study was to establish the population- and laboratory-specific reference intervals (RIs) for the Slovenian adult population for 24 trace elements (TEs) in blood, plasma and erythrocytes and to evaluate the impact of gender, age, seafood consumption, smoking habits and amalgam fillings on TEs levels. METHODS: TEs (Mn, Co, Cu, Zn, Se and Mo, Li, Be, V, Cr, Ni, Ga, As, Rb, Sr, Ag, Cd, Sn, Cs, Au, Hg, Tl, Pb and U) were determined in 192 a priori selected blood donors (107 women and 85 men, aged 18-65 years), using inductively coupled plasma mass spectrometry (ICP-MS) with the Octopole Reaction System. Participants filled out a questionnaire, and RIs were established according to the Clinical and Laboratory Standards Institute (CLSI) guidelines for TEs. RESULTS: Uniform RIs for non-essential and gender-specific for essential TEs in blood, plasma and erythrocytes were established. In our population, higher blood and plasma Cu, and erythrocyte Mn levels in women were found. In men, blood Zn, plasma Zn, Mn and Se, and erythrocyte Cu levels were higher. Zn levels were higher in 30-39 years age group. Pb and Sr increased with age. Smoking positively affected Cd, Pb, Cs and Rb; seafood consumption increased As, Hg and Zn; and amalgam increased Hg, Ag and Cu levels. CONCLUSIONS: Essential TEs were inside recommended levels, and the non-essential ones were far below critical levels. Established RIs will provide an important foundation for clinical diagnostics, safety erythrocyte transfusions assessment, toxicology and epidemiological studies.


Subject(s)
Mercury , Trace Elements , Adult , Male , Humans , Female , Mass Spectrometry/methods , Trace Elements/analysis , Cadmium , Lead , Erythrocytes/chemistry
4.
Int J Hyg Environ Health ; 249: 114139, 2023 04.
Article in English | MEDLINE | ID: mdl-36870229

ABSTRACT

One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.


Subject(s)
Biological Monitoring , Mercury , Humans , Environmental Monitoring/methods , Policy , Risk Assessment
5.
Int J Hyg Environ Health ; 248: 114115, 2023 03.
Article in English | MEDLINE | ID: mdl-36689783

ABSTRACT

The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 µg/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 µg/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe.


Subject(s)
Arsenic , Arsenicals , Adolescent , Humans , Arsenic/analysis , Arsenicals/urine , Europe , France , Environmental Exposure/analysis
6.
Environ Res ; 220: 115226, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36621546

ABSTRACT

The impacts of single-nucleotide polymorphisms (SNPs) in ALAD and VDR genes on Pb health effects and/or kinetics are inconclusive at low exposure levels, while studies including APOE SNPs are rare. In this study, we examined the associations of ALAD, VDR and APOE SNPs with exposure biomarkers of Pb and other trace elements (TEs) in Italian pregnant women (N = 873, aged 18-44 years) and their newborns (N = 619) with low-level mixed-element exposure through diet, the environment or endogenously. DNA from maternal peripheral venous blood (mB), sampled during the second and third trimesters, was genotyped for ALAD (rs1800435, rs1805313, rs1139488, rs818708), VDR (rs2228570, rs1544410, rs7975232, rs731236) and APOE (rs429358, rs7421) using TaqMan SNP assays. Personal and lifestyle data and TE levels (mB, maternal plasma, hair and mixed umbilical cord blood [CB]) from the PHIME project were used. Multiple linear regression models, controlling for confounding variables, were performed to test the associations between SNPs and TEs. The geometric means of mB-Pb, mB-Hg, mB-As and mB-Cd (11.0 ng/g, 2.16 ng/g, 1.38 ng/g and 0.31 ng/g, respectively) indicated low exposure levels, whereas maternal plasma Zn and Se (0.72 µg/mL and 78.6 ng/g, respectively) indicated adequate micronutritional status. Variant alleles of ALAD rs1800435 and rs1805313 were negatively associated with mB-Pb levels, whereas a positive association was observed for rs1139488. None of the VDR SNPs or their haplotypes had any association with Pb levels. Regarding APOE, the ϵ4 allele was associated with lower mB-Hg and CB-Hg, while a positive association was found with the ϵ2 allele and CB-Pb when the model included only newborn girls. The observed associations indicate possible modification effects of ALAD and APOE SNPs on Pb or Hg kinetics in women and their newborns with low exposure to non-essential TEs, as well as an adequate nutritional status of Zn and Se.


Subject(s)
Mercury , Selenium , Trace Elements , Female , Humans , Infant, Newborn , Pregnancy , Apolipoproteins E/genetics , Lead , Nutritional Status , Polymorphism, Single Nucleotide , Pregnant Women , Zinc
7.
Anal Bioanal Chem ; 415(2): 317-326, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36348039

ABSTRACT

This work describes the intricacies of the determination of the trimethylselenonium ion (TMSe) in human urine via high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS). By definition, this technique requires that the separated TMSe can be online converted into a volatile compound. Literature data for the determination of TMSe via the hydride generation technique are contradictory; i.e., some authors claim that direct formation of volatile compounds is possible under reduction with NaBH4, whereas others reported that a digestion step is mandatory prior to conversion. We studied and optimized the conditions for online conversion by varying the mobile phase composition (pyridine, phosphate, and acetate), testing different reaction coils, and optimizing the hydride generation conditions, although technically no hydride (H2Se) is formed but a dimethylselenide (DMSe). The optimized conditions were used for the analysis of 64 urine samples of 16 (unexposed) volunteers and the determination of low amounts of TMSe (LOD = 0.2 ng mL-1). Total (specific gravity-corrected) selenium concentrations in the urine samples ranged from 7.9 ± 0.7 to 29.7 ± 5.0 ng mL-1 for individual volunteers. Four volunteers were characterized as TMSe producers (hINMT genotype GA) and 12 were non-producers (hINMT genotype GG). Urine of TMSe producers contained 2.5 ± 1.7 ng mL-1 of TMSe, compared to 0.2 ± 0.2 ng mL-1 for non-producers.


Subject(s)
Selenium Compounds , Selenium , Humans , Chromatography, High Pressure Liquid/methods , Spectrometry, Fluorescence , Selenium/urine
8.
Nutrients ; 14(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364931

ABSTRACT

Trace elements, including zinc (Zn) and copper (Cu), are known to play important roles in human health. The present study aimed to assess the levels of Zn and Cu in cord blood and maternal milk and to analyze their association with maternal and infant characteristics and pregnancy outcomes in a Slovenian study population of mothers and their neonates recruited within the PHIME prospective cohort study. The study included 324 mothers, but the data on Zn and Cu levels in both cord blood and maternal milk was available for 243 mothers. Questionnaires were used to assess the socio-demographic and health status of the mothers, their lifestyle habits (including detailed nutritional habits), and their residential and occupational histories. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to measure Zn and Cu levels in cord blood and maternal milk. Low Zn levels in cord blood were associated with lower gestational age and birth weight and were correlated with an increased probability of the birth of small for gestational age (SGA) infants. Maternal smoking influenced the Cu levels in both cord blood and maternal milk. Cord blood Cu levels were higher and Cu levels in maternal milk were lower in smoking compared to non-smoking mothers. Most importantly, a decreased Zn/Cu ratio in cord blood was associated with lower gestational age and lower birth weight. This indicates the overall positive effects of Zn and negative effects of Cu on pregnancy outcomes.


Subject(s)
Fetal Blood , Milk, Human , Zinc , Female , Humans , Infant , Infant, Newborn , Pregnancy , Birth Weight , Copper , Fetal Blood/chemistry , Pregnancy Outcome , Prospective Studies , Milk, Human/chemistry
9.
Environ Int ; 159: 107046, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34920277

ABSTRACT

Single nucleotide polymorphisms (SNPs) of cytochrome P450 (CYPs) and UDP-glucuronosyltransferase (UGTs) genes have been proposed to influence phthalates and 1,2-cyclo-hexanedicarboxylic acid diisononyl ester (DINCH) biotransformation but have not been investigated on a populational level. We investigated the role of SNPs in CYP2C9, CYP2C19, CYP2D6, UGT2B15, and UGT1A7 genes in the biotransformation of phthalates (DEHP, DEP, DiBP, DnBP, BBzP, DiNP, DidP) and DINCH by determining their urine metabolites. From the Slovenian study population of 274 men and 289 lactating primiparous women we obtained data on phthalate and DINCH urine metabolite levels (MEHP, 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP, MEP, MiBP, MnBP, MBzP, cx-MINP, OH-MiDP, MCHP, MnPeP, MnOP, 5OH-MINCH, 5oxo-MINCH), SNP genotypes (rs1057910 = CYP2C9*3, rs1799853 = CYP2C9*2, rs4244285 = CYP2C19*2, rs12248560 = CYP2C19*17, rs3892097 = CYP2D6*4, rs1902023 = UGT2B15*2, and rs11692021 = UGT1A7*3) and questionnaires. Associations of SNPs with levels of metabolites and their ratios were assessed by multiple linear regression and ordinary logistic regression analyses. Significant associations were observed for CYP2C9*2, CYP2C9*3, CYP2C19*17, and UGT1A7*3 SNPs. The most pronounced was the influence of CYP2C9*2 and *3 on the reduced DEHP biotransformation, with lower levels of metabolites and their ratios in men and women. In contrast, carriers of CYP2C19*17 showed higher urine levels of DEHP metabolites in both genders, and in women also in higher DiNP, DiDP, and DINCH metabolite levels. The presence of UGT1A7*3 was associated with increased metabolite levels of DINCH in men and of DiBP and DBzP in women. Statistical models explained up to 27% of variability in metabolite levels or their ratios. Our observations confirm the effect of CYP2C9*2 and *3 SNPs towards reduced DEHP biotransformation. We show that CYP2C9*2, CYP2C9*3, CYP2C19*17, and UGT1A7*3 SNPs might represent biomarkers of susceptibility or resilience in phthalates and DINCH exposure that have been so far unrecognised.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Phthalic Acids , Cytochrome P-450 Enzyme System , Diethylhexyl Phthalate/urine , Environmental Exposure/analysis , Environmental Pollutants/urine , Female , Humans , Lactation , Male , Phthalic Acids/urine , Polymorphism, Single Nucleotide
10.
Mar Pollut Bull ; 172: 112874, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34454384

ABSTRACT

Chemical pollution is a major environmental concern especially in coastal areas, having adverse impacts on marine organisms and ecosystem services. Macroalgae can accumulate trace elements, but available studies are restricted to a limited number of elements and species. The goal of this research was to assess, seasonally, the concentrations of 22 elements in the brown alga Padina pavonica from monitoring sampling sites in Slovenian waters. The concentration of most elements in thalli differed significantly between spring and autumn, with generally higher levels in autumn samples. However, it was not possible to correlate these concentrations with the ecological status of macroalgae. The maximum values set by European regulations for the potentially hazardous As, Cd and Hg in food and feed were never exceeded, while Pb concentrations were slightly higher. The results show that P. pavonica can act as an effective bioindicator of chemical pollution.


Subject(s)
Phaeophyceae , Trace Elements , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Seawater , Trace Elements/analysis , Water Pollutants, Chemical/analysis
11.
Food Chem ; 342: 128348, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33077276

ABSTRACT

A survey of highly toxic arsenic compounds, together with some other elements was carried out on 40 polished rice samples (white, basmati and parboiled) and 10 brown rice samples from the Slovenian market. The average total As concentration was 157 ± 60 µg kg-1; highest levels were found in parboiled and brown rice and lowest in basmati. The average inorganic As concentration was 90 ± 35 µg kg-1. Dimethylarsinic acid and monomethylarsonic acid, which also exhibit high toxicity levels in some cases constitute >50% of total arsenic and might deserve more attention. Contrary to other foods, the total arsenic concentration in rice may even be a better health hazard indicator than the inorganic arsenic concentration. Elemental analysis of rice revealed large differences between polished and brown rice, especially for Mg, Mn, P, Fe and K, which were 2-4 times higher in brown rice than in polished rice.


Subject(s)
Arsenic/analysis , Oryza/chemistry , Arsenic/chemistry , Food Contamination/analysis , Slovenia
12.
Environ Int ; 143: 105626, 2020 10.
Article in English | MEDLINE | ID: mdl-32622117

ABSTRACT

We investigated the relationship between lipid binding glycoprotein apolipoprotein E (apoE; gene APOE) polymorphisms (ε4 allele carriers versus no carriers = Îµ4+/ε4-) and trace elements (TEs) (e.g., (methyl)mercury, arsenic, lead, cadmium, selenium, manganese, copper, and zinc) in mothers (N = 223) and their new-borns (N = 213) exposed to potentially toxic metal(loid)s from seafood consumption. The apoE isoform encoded by the ε4 allele is believed to have beneficial effects in early life but represents a risk factor for age-associated diseases. Under certain conditions ε4 carriers are more susceptible to oxidative stress and metal(loid) toxicity. DNA from Croatian pregnant women (N = 223, third trimester) and their new-borns (N = 176), was genotyped for APOE by TaqMan® SNP assay - rs429358 and rs7412. Seafood intake data and TE levels in maternal urine, milk, hair, peripheral venous blood, mixed cord blood, and new-borns' urine were available from previous studies. We compared TEs between ε4+ and ε4- carriers using Mann-Whitney U tests and applied multiple linear regression models to analyse the TE's dependence on the presence of allele ε4 (genotypes ε3/ε4, ε4/ε4) in combination with other explanatory variables. We identified 17% (n = 37) and 20% (n = 35) ε4 allele carriers in mothers and new-borns, respectively. The Mann-Whitney U test showed that mothers with the ε4 allele had significantly higher mean levels of (methyl)mercury in peripheral venous blood, cord blood, and hair; arsenic in urine and cord blood; and selenium in peripheral venous blood and plasma. However, taking confounders into account, only the maternal plasma selenium remained statistically significant in the linear regression models (ε4 carriers vs non-carriers: 62.6 vs 54.9 ng/mL, p < 0.001). Literature suggestions of possible ε4 allele impact on Hg levels were not observed, while superior selenium status observed in healthy pregnant women carrying allele ε4 could be linked to the proposed APOE ε4 beneficial effects early in life.


Subject(s)
Trace Elements , Apolipoproteins E/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Genetic , Pregnancy , Pregnant Women
13.
Acta Chim Slov ; 67(3): 985-991, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33533426

ABSTRACT

Since arsenic (As) exposure is largely due to geochemical contamination, this study focused on the remediated area of Santana do Morro, a district of Santa Bárbara, Minas Gerais, Brazil, which was previously contaminated with As due to gold mining. Total As concentrations in sediment, soil and plants were determined, next to As species, anionic arsenic compounds As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), in plants samples. Total As concentrations in soil and sediments were slightly elevated (16-18 µg g-1) and most of the plants contained low levels of As (< 1 µg g-1). The exception was a native plant Eleocharis geniculata (L.) which contained elevated levels of As (4 µg g-1). The exposure of this plant to As under controlled conditions (hydroponics) indicated its possible tolerance to elevated As levels and suggesting its potential use in phytomonitoring of As-contaminated sites. This plant is able to metabolize arsenate to arsenite and contained MMA and DMA, both in its natural habitat and under controlled conditions.


Subject(s)
Arsenic/analysis , Arsenic/metabolism , Eleocharis/metabolism , Geologic Sediments/chemistry , Plants/chemistry , Soil/chemistry , Arsenicals/analysis , Brazil , Cacodylic Acid/analysis , Soil Pollutants/analysis , Soil Pollutants/metabolism
14.
Sci Total Environ ; 719: 134427, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-31859063

ABSTRACT

At three uranium (U) legacy sites in Kyrgyzstan, namely, Kadji Sai, Mailuu-Suu and Sumsar, an initial human bio-monitoring programme was introduced as a complementary activity to environmental impact studies in these areas. The aim was to assess trace element (TE) contents in blood and genetic susceptibility for Pb as one of the contaminants. The programme included the determination of 9 TE in blood samples from 123 residents living permanently in this environment. The analyses included U and the potentially toxic TE, lead (Pb), cadmium, mercury (Hg), and arsenic (As), together with essential elements iron (Fe), copper, selenium (Se) and manganese (Mn). TE were analysed by inductively coupled plasma mass spectrometry (ICPMS) and genetic background effect by three single nucleotide polymorphisms (SNPs) of delta-aminolevulinic acid dehydratase (ALAD; rs1805313, rs818708, rs1800435) genotyped by quantitative polymerase chain reaction (qPCR). The obtained results were generally similar to literature reference values obtained from the U non-exposed environments. However, some significant findings indicated elevated levels of certain contaminants typical of the studied environment (U, Pb). Several essential (Se, Mn) and toxic TE (Pb, Hg, As, U) in blood showed statistically significant differences among the studied areas. All areas showed diminished Fe blood levels. Altogether, this indicated specific and different environmental conditions at three industrial legacy sites for U milling and processing along with the accompanying chemical (pollutant) elements. Blood U concentrations were slightly higher at Mailuu-Suu, known for elevated technogenic and naturally occurring U. At Sumsar, the distribution of elevated blood Pb concentrations indicated an airborne source of pollution that was different from the anticipated aqueous exposure pathway. Pb blood variability was found associated with ALAD polymorphisms (SNPs rs1805313, rs1800435). Results are confirming that human data will be a useful and scientifically important additional tool for environmental impact assessment studies at industrial legacy sites in Kyrgyzstan.


Subject(s)
Polymorphism, Single Nucleotide , Porphobilinogen Synthase/genetics , Arsenic , Humans , Kyrgyzstan , Trace Elements , Uranium
15.
Environ Res ; 179(Pt A): 108724, 2019 12.
Article in English | MEDLINE | ID: mdl-31627028

ABSTRACT

Meconium is formed early in gestation and it is normally not excreted until after birth. Thus it may provide a longer and cumulative record of exposure to mercury (Hg). The present study aims to speciate Hg in meconium samples (N = 488) from Slovenian and Croatian new-borns prenatally exposed to low levels of methyl-Hg (MeHg) from maternal seafood intake and to Hg0 from maternal dental amalgam fillings. We had complete data of total Hg (THg) and MeHg in meconium and THg in maternal hair (MH), while THg and MeHg in maternal blood (MB) were available only for Croatian mothers. Personal data namely maternal seafood intake, age, pre-pregnancy BMI, parity, smoking, estimated gestational age at birth, sex, and birth weight were available for the majority of participants, except the number of dental amalgams which was in most cases missing for Croatian mothers. The median THg concentration in meconium was 11.1 (range: 0.41-375.2) ng/g and inorganic Hg (Hg(II)) presented 98.8% (range: 82%-100%, CV: 2%) of THg. We observed significant correlation between meconium and MH Hg levels, with the highest correlation between hair THg and meconium MeHg. Correlation analysis including MB (available only for Croatian population) showed a significant positive correlation between THg in meconium and THg in MB (Rs = 0.642). Additionally, MeHg from MB was correlated with MeHg in meconium (Rs = 0.898), while the correlation between Hg(II) in MB and meconium was positive, but not significant. Maternal seafood intake was significantly correlated with meconium MeHg (Rs = 0.498) and Hg(II) (Rs = 0.201). Multiple linear regression (performed on the Slovenian population, N = 143) confirmed a positive association between meconium MeHg and seafood intake. Furthermore, meconium Hg(II) was positively associated with the number of maternal dental amalgam fillings, but linear regression models did not confirm correlation between seafood intake and meconium Hg(II) levels. We assume that Hg0 released from maternal dental amalgam fillings and MeHg from seafood intake were both transported through the placental barrier and portioned between different foetal compartments including meconium. Weak correlation between maternal seafood intake and Hg(II) levels in meconium suggests that there is certain evidence of MeHg demethylation. However, because this correlation was not confirmed by the multiple regression, MeHg demethylation during prenatal life cannot be neither confirmed nor excluded. Further investigations at higher level of exposure are needed to confirm this observations. We can conclude that meconium is a suitable biomarker for MeHg and Hg0 exposure during pregnancy. However, comparability of the results reported in meconium in different studies is hindered by a lack of standardized sampling protocols, storage, and analysis.


Subject(s)
Environmental Pollutants/analysis , Maternal Exposure/statistics & numerical data , Meconium/chemistry , Mercury/analysis , Biomarkers , Female , Hair , Humans , Infant, Newborn , Methylmercury Compounds/analysis , Pregnancy , Seafood
16.
Environ Res ; 177: 108627, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31421448

ABSTRACT

In recent years, several studies have addressed the issue of prenatal exposure to methylmercury (MeHg); however, few have actually analysed MeHg blood concentrations. Our study population included mothers and their new-borns from Slovenia (central region; N = 584) and Croatia (coastal region; N = 234). We have measurements of total Hg (THg) and MeHg in maternal hair, maternal peripheral blood, and cord blood. Cord blood Hg concentrations were low to moderate (median THg = 1.84 ng/g and MeHg = 1.69 ng/g). The proportion of THg as MeHg (%MeHg) in maternal and cord blood varied between 4% and 100% (coefficient of variation, CV = 32%) and between 8% and 100% (CV = 20%), respectively. Our data shows that variability of %MeHg was higher at lower blood THg levels. Concentrations of MeHg in maternal blood and cord blood were highly correlated (Rs = 0.943), in the case of inorganic Hg correlation was significant but weaker (Rs = 0.198). MeHg levels in maternal blood and cord blood were positively associated with seafood intake, maternal age, and negatively associated with pre-pregnancy BMI. Additionally, MeHg in maternal blood was positively associated with plasma selenium levels, and cord blood MeHg was negatively associated with parity. The results of multiple linear regression models showed that speciation analysis provides more defined estimation of prenatal exposure in association modelling. Associations between Hg exposure and cognitive performance of children (assessed using Bayley Scales of Infant and Toddler development) adjusted for maternal or child Apolipoprotein E genotypes showed higher model R2 and lower p-values when adjusted for MeHg compared to THg. This study demonstrates that Hg speciation improves the association between exposure and possible negative health effects.


Subject(s)
Maternal Exposure , Mercury/blood , Methylmercury Compounds/blood , Croatia , Female , Fetal Blood , Humans , Infant, Newborn , Pregnancy , Slovenia
17.
Environ Res ; 176: 108529, 2019 09.
Article in English | MEDLINE | ID: mdl-31255949

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the association of maternal blood selenium (Se) levels and cord blood Se levels with neonatal cerebellum measures and child neurodevelopment at the age of 18 months. Moreover, to investigate whether the neonatal cerebellum measures could be used as a potential biomarker for selenium homeostasis during pregnancy. STUDY GROUP AND METHODS: The study population consisted of 205 mother-child pairs from Croatian Mother and Child Cohort. Maternal blood and cord blood were obtained at delivery and selenium level was analyzed by Inductively Coupled Plasma Mass Spectrometry. Cranial ultrasonography examination was performed on 49 newborns - cerebellum length and width have been measured. Neurodevelopmental assessment of cognitive, language and motor skills were conducted on 154 children, using The Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III), at the age of 18 months. RESULTS: The mean levels of selenium in maternal blood and cord blood were 92.6 ng/g and 97.0 ng/g, respectively. Maternal blood selenium levels were moderately and negatively correlated (r = -0.372; p = 0.008) with cerebellum length, while cord blood selenium levels were positively correlated with cerebellum width (r = 0.613; p = 0.007) among female children group. Maternal blood selenium levels were weakly and positively correlated (r = 0.176; p = 0.029) with child's cognitive abilities. CONCLUSION: To the best of our knowledge, our study is the first one investigating the association between neonatal brain measures and selenium levels in mother-child pairs. Our results indicate that prenatal selenium intake correlated with cerebellum length and width measured by cranial ultrasonography. Hence, cerebellum may be used as a potential biomarker and a target "organ" for early detection of possible adverse effects of prenatal status to various micronutrients.


Subject(s)
Cerebellum/anatomy & histology , Environmental Exposure/statistics & numerical data , Environmental Pollutants , Neurodevelopmental Disorders/epidemiology , Selenium , Child Development , Female , Fetal Blood , Humans , Infant , Infant, Newborn , Pregnancy , Prenatal Exposure Delayed Effects
18.
Int J Hyg Environ Health ; 222(3): 563-582, 2019 04.
Article in English | MEDLINE | ID: mdl-30878540

ABSTRACT

The first national human biomonitoring in Slovenia surveyed cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), manganese (Mn), selenium (Se), copper (Cu) and zinc (Zn) in a childbearing population (18-49 years) selected from lactating primiparous women and men (N = 1084). The overall aim was to estimate trace elements' levels and geographical variations in order to identify sources of possible exposures and set the national reference values. The study population was selected evenly from 12 study areas across Slovenia, including rural, urban and known or potentially contaminated environments. Within 6-8 weeks after delivery, venous blood, spot urine, scalp hair and breast milk samples were collected to determine the selected elements. The data analysis included descriptive statistics and multiple linear regression using elemental concentrations in biological matrices, questionnaire data and environmental datasets. Essential elements showed no significant deficiencies or excessive levels in the study population and were largely determined by sex and/or the participating women's physiological status (postpartum, lactation), as well as by certain dietary sources. Toxic elements' levels were mainly below the levels considered to present increased health risk. Lifestyle and nutritional habits appeared as significant determinants of exposure to Cd (smoking and game meat consumption), Hg (seafood and amalgam fillings), As (seafood) and Pb (alcohol consumption, smoking, game meat consumption and type of water supply). A distinctive geographical pattern was confirmed, due to past mining activities combined with naturally elevated background levels in the cases of Pb (Mezica Valley), Hg (Idrija and Posocje) and As exposure (Zasavje). Increased seafood consumption in the coastal study area contributed to higher Hg and As (arsenobetaine) levels. Extensive sample size database accompanied with life-style and environmental data improved the prediction of exposure patterns, set the reference values for the childbearing population living in Slovenia, and provided a strong basis for evaluating spatial and temporal trends in exposure. To our best knowledge, this is the first study to establish reference values for lactating primiparous women.


Subject(s)
Arsenic/analysis , Environmental Pollutants/analysis , Metals, Heavy/analysis , Selenium/analysis , Adolescent , Adult , Arsenic/blood , Arsenic/urine , Biological Monitoring , Breast Feeding , Environmental Pollutants/blood , Environmental Pollutants/urine , Female , Hair/chemistry , Humans , Male , Metals, Heavy/blood , Metals, Heavy/urine , Middle Aged , Milk, Human/chemistry , Reference Values , Selenium/blood , Selenium/urine , Slovenia , Young Adult
19.
Environ Res ; 170: 301-319, 2019 03.
Article in English | MEDLINE | ID: mdl-30612060

ABSTRACT

The relationships between inorganic arsenic (iAs) metabolism, selenium (Se) status, and genetic polymorphisms of various genes, commonly studied in populations exposed to high levels of iAs from drinking water, were studied in a Croatian-Slovenian population from the wider PHIME-CROME project. Population consisted of 136 pregnant women in the 3rd trimester and 176 non-pregnant women with their children (n = 176, 8-9 years old). Their exposure to iAs, defined by As (speciation) analyses of biological samples, was low. The sums of biologically active metabolites (arsenite + arsenate + methylated As forms) for pregnant women, non-pregnant women, and children, respectively were: 3.23 (2.84-3.68), 1.83 (1.54-2.16) and 2.18 (1.86-2.54) ng/mLSG; GM (95 CI). Corresponding plasma Se levels were: 54.8 (52.8-56.9), 82.3 (80.4-84.0) and 65.8 (64.3-67.3) ng/mL; GM (95 CI). As methylation efficiency indexes confirmed the relationship between pregnancy/childhood and better methylation efficiency. Archived blood and/or saliva samples were used for single nucleotide polymorphism (SNP) genotyping of arsenic(3+) methyltransferase - AS3MT (rs7085104, rs3740400, rs3740393, rs3740390, rs11191439, rs10748835, rs1046778 and the corresponding AS3MT haplotype); methylene tetrahydrofolate reductase - MTHFR (rs1801131, rs1801133); aquaporin - AQP 4 and 9 (rs9951307 and rs2414539); selenoprotein P1 - SELENOP (rs7579, rs3877899); indolethylamine N-methyltransferase - INMT (rs6970396); and metallothionein 2A - MT2A (rs28366003). Associations of SNPs with As parameters and urine Se were determined through multiple regression analyses adjusted using appropriate confounders (blood As, plasma Se, ever smoking, etc.). SNPs' influence on As methylation, defined particularly by the secondary methylation index (SMI), confirmed the 'protective' role of minor alleles of six AS3MT SNPs and their haplotype only among non-pregnant women. Among the other investigated genes, the carriers of AQP9 (rs2414539) were associated with more efficient As methylation and higher urine concentration of As and Se among non-pregnant women; poorer methylation was observed for carriers of AQP4 (rs9951307) among pregnant women and SELENOP (rs7579) among non-pregnant women; MT2A (rs28366003) was associated with higher urine concentration of AsIII regardless of the pregnancy status; and INMT (rs6970396) was associated with higher As and Se concentration in non-pregnant women. Among confounders, the strongest influence was observed for plasma Se; it reduced urine AsIII concentration during pregnancy and increased secondary methylation index among non-pregnant women. In the present study of populations with low As exposure, we observed a few new As-gene associations (particularly with AQPs). More reliable interpretations will be possible after their confirmation in larger populations with higher As exposure levels.


Subject(s)
Arsenic/metabolism , Environmental Exposure/analysis , Selenium/metabolism , Aquaporin 4/genetics , Aquaporins/genetics , Child , Female , Humans , Metallothionein/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methyltransferases/genetics , Population , Pregnancy
20.
Nutrients ; 10(3)2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29495604

ABSTRACT

Since the environmental levels of selenium (Se) can moderate the bioaccumulation and toxicity of mercury (Hg) in marine organisms, their interactions were studied in seawater, sediments, plankton and the benthic (Bull ray Pteromylaeus bovinus, Eagle ray Myliobatis aquila) and the pelagic (Pelagic stingray Dasyiatis violacea) rays, as apex predators in the Gulf of Trieste (Northern Adriatic Sea). Male and female rays showed no difference in the Se contents in muscle tissue. Pelagic species contained higher Se levels in muscle but slightly lower levels in the livers of both genders. The Hg/Se ratios in seawater dissolved and colloidal fractions, plankton and sediment were <0.5, while those in particulate matter were <1.3. In benthic ray species, a parallel increase in Se and Hg in muscle was observed, so that an increased in Hg (MeHg) bioaccumulation results in Se coaccumulation. The Hg/Se ratios (molar) in muscle and liver of pelagic and benthic rays were <1.4 and <0.7, respectively. The low levels of Hg in muscle and liver in all the ray species corresponded to low Hg/Se ratios and increases in muscle and liver to 1 at 7 µg/g, dry weight (dw) and 5 µg/g dw, respectively, i.e., about 1.6 µg/g wet weight (ww).


Subject(s)
Food Contamination/analysis , Food Supply , Geologic Sediments/analysis , Mercury/analysis , Plankton/metabolism , Predatory Behavior , Seawater/analysis , Selenium/analysis , Skates, Fish/physiology , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , Female , Liver/metabolism , Male , Mercury/metabolism , Mercury/toxicity , Muscles/metabolism , Oceans and Seas , Risk Assessment , Seawater/adverse effects , Selenium/metabolism , Selenium/toxicity , Skates, Fish/metabolism , Time Factors , Tissue Distribution , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL