Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Glob Chang Biol ; 30(7): e17399, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007251

ABSTRACT

The ever-increasing and expanding globalisation of trade and transport underpins the escalating global problem of biological invasions. Developing biosecurity infrastructures is crucial to anticipate and prevent the transport and introduction of invasive alien species. Still, robust and defensible forecasts of potential invaders are rare, especially for species without known invasion history. Here, we aim to support decision-making by developing a quantitative invasion risk assessment tool based on invasion syndromes (i.e., generalising typical attributes of invasive alien species). We implemented a workflow based on 'Multiple Imputation with Chain Equation' to estimate invasion syndromes from imputed datasets of species' life-history and ecological traits and macroecological patterns. Importantly, our models disentangle the factors explaining (i) transport and introduction and (ii) establishment. We showcase our tool by modelling the invasion syndromes of 466 amphibians and reptile species with invasion history. Then, we project these models to amphibians and reptiles worldwide (16,236 species [c.76% global coverage]) to identify species with a risk of being unintentionally transported and introduced, and risk of establishing alien populations. Our invasion syndrome models showed high predictive accuracy with a good balance between specificity and generality. Unintentionally transported and introduced species tend to be common and thrive well in human-disturbed habitats. In contrast, those with established alien populations tend to be large-sized, are habitat generalists, thrive well in human-disturbed habitats, and have large native geographic ranges. We forecast that 160 amphibians and reptiles without known invasion history could be unintentionally transported and introduced in the future. Among them, 57 species have a high risk of establishing alien populations. Our reliable, reproducible, transferable, statistically robust and scientifically defensible quantitative invasion risk assessment tool is a significant new addition to the suite of decision-support tools needed for developing a future-proof preventative biosecurity globally.


Subject(s)
Amphibians , Forecasting , Introduced Species , Reptiles , Animals , Reptiles/physiology , Amphibians/physiology , Risk Assessment/methods , Models, Theoretical , Models, Biological
2.
Ecol Evol ; 13(12): e10791, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094152

ABSTRACT

In animals, the success of particular lineages can be measured in terms of their number of species, the extent of their geographic range, the breadth of their habitats and ecological niches, and the diversity of their morphological and life-history traits. Here, we review the distribution, ecology, morphology and life history of skinks, a diverse lineage of terrestrial vertebrates. We compared key traits between the three subfamilies of skinks, and between skinks and non-scincid lizards. There are currently 1743 described species of skink, which represent 24% of global lizard diversity. Since 2010, 16% of lizard descriptions have been of skinks. The centres of skink diversity are in Australia, New Guinea, southeast Asia, Oceania, Madagascar and central Africa. Compared with non-scincid lizards, skinks have larger distributional ranges, but smaller body sizes. Sexual size dimorphism is rare in skinks. Almost a quarter (23%) of skinks exhibit limb reduction or loss, compared with just 3% of non-scincid lizards. Skinks are more likely to be viviparous (34% of species) compared with non-scincids (13%), and have higher clutch/litter sizes than non-scincids. Although skinks mature later than non-scincids, their longevity is similar to that exhibited by other lizard groups. Most skinks (88%) are active foragers, and they are more likely to be carnivorous than non-scincids. Skinks are more likely to be diurnal or cathemeral than other lizard groups, but they generally have lower field body temperatures compared with non-scincids. The success of skinks appears to be both a result of them hitting upon a winning body plan and ecology, and their capacity to regularly deviate from this body plan and adapt their ecology and life history (e.g. repeated limb reduction and loss, transitions to viviparity) to prevailing conditions.

3.
Integr Comp Biol ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858300

ABSTRACT

For most species, the factors that determine geographical range limits are unknown. In mesic-adapted species, populations occurring near the edge of the species' distribution provide ideal study systems in which to investigate what limits distributional ranges. We aimed to identify the abiotic constraints that preclude an east-Australian mesic adapted lizard (Lampropholis delicata) from occupying arid environments. We performed lizard surveys at sites spanning an elevation/aridity gradient (380-1070 m), and measured the prevalence of habitat features (logs, rocks, leaf litter, bare ground, solar radiation) in addition to hourly temperatures in a variety of microhabitats available to lizards. Species distribution modelling (SDM) was used to identify the macroclimatic variables limiting the species' distribution. At its inland range limit, L. delicata is associated with mesic high-elevation forests with complex microhabitat structures, which gradually decline in availability towards lower (and more arid) elevations where the species is absent. Moreover, L. delicata is absent from sites with a shallow leaf litter layer, in which daily temperatures exceed the species' thermal preference range, which we determined in a laboratory thermal gradient. In regards to macroclimate, SDM revealed that temperature seasonality is the primary variable predicting the species' distribution, suggesting that L. delicata avoids inland areas owing to their high annual thermal variability. By combining multiple lines of evidence, this research highlights that habitat and microclimate suitability-not solely macroclimate suitability-are important range-limiting factors for mesic ectotherms, and should be incorporated in studies addressing range-limiting hypotheses.

4.
J Therm Biol ; 114: 103579, 2023 May.
Article in English | MEDLINE | ID: mdl-37344018

ABSTRACT

Alternative phenotypes allow individuals to pursue different adaptive pathways in response to the same selective challenge. Colour polymorphic species with geographically varying morph frequencies may reflect multiple adaptations to spatial variables such as temperature and climate. We examined whether thermal biology differed between colour morphs of an Australian lizard, the delicate skink, Lampropholis delicata. The delicate skink has two colour pattern morphs, with frequencies varying across latitude and sex: plain (darker, more common at temperate latitudes, more common in males) or striped (lighter, more common at lower latitudes, more common in females). We tested heating and cooling rate, sprint speed, thermal preference, field body temperature and metabolic rate in both morphs and sexes to determine any link between colour and morph frequency distribution. Plain individuals heated more quickly, but other thermal traits showed little variation among morphs. Lampropholis delicata colour influences rates of heat exchange, but the relationship does not appear to be adaptive, suggesting that behavioural thermoregulation homogenises body temperature in the field. While we find no substantial evidence of thermal differences between the two colour morphs, morph-specific behaviour may buffer against differences in heat exchange. Latitudinal variation in species colour may be driven by selection pressures other than temperature.


Subject(s)
Lizards , Lizards/anatomy & histology , Lizards/classification , Lizards/genetics , Lizards/physiology , Animals , Pigmentation , Polymorphism, Genetic , Male , Female , Heating , Skin Pigmentation , Skin Physiological Phenomena
5.
Evolution ; 76(6): 1195-1208, 2022 06.
Article in English | MEDLINE | ID: mdl-35355258

ABSTRACT

Many animals have strict diel activity patterns, with unique adaptations for either diurnal or nocturnal activity. Diel activity is phylogenetically conserved, yet evolutionary shifts in diel activity occur and lead to important changes in an organism's morphology, physiology, and behavior. We use phylogenetic comparative methods to examine the evolutionary history of diel activity in skinks, one of the largest families of terrestrial vertebrates. We examine how diel patterns are associated with microhabitat, ambient temperatures, and morphology. We found support for a nondiurnal ancestral skink. Strict diurnality in crown group skinks only evolved during the Paleogene. Nocturnal habits are associated with fossorial activity, limb reduction and loss, and warm temperatures. Our results shed light on the evolution of diel activity patterns in a large radiation of terrestrial ectotherms and reveal how both intrinsic biotic and extrinsic abiotic factors can shape the evolution of animal activity patterns.


Subject(s)
Lizards , Adaptation, Physiological , Animals , Extremities , Lizards/anatomy & histology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL