Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Am J Hum Genet ; 111(9): 1970-1993, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39106866

ABSTRACT

The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.


Subject(s)
Replication Protein C , Humans , Replication Protein C/genetics , Replication Protein C/metabolism , Male , HeLa Cells , Female , Phenotype , DNA Replication/genetics , Adult , Mutation , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Alleles
2.
J Cell Physiol ; 237(1): 1013-1032, 2022 01.
Article in English | MEDLINE | ID: mdl-34543438

ABSTRACT

We report a novel in vitro classification system that tracks microglial activation state and their potential neurotoxicity. Mixed live-cell imaging was used to characterize transition through distinct morphological phenotypes, production of reactive oxygen species (ROS), formation of reactive microglial aggregates, and subsequent cytokine production. Transwell cultures were used to determine microglial migration (control and lipopolysaccharide (LPS) treated) to glutamate pre-stressed or healthy neurons. This two-hit paradigm was developed to model the vast evidence that neurodegenerative conditions, like Parkinson's disease (PD), may stem from the collective impact of multiple environmental stressors. We found that healthy neurons were resistant to microglial-mediated inflammation, whereas glutamate pre-stressed neurons were highly susceptible and in fact, appeared to recruit microglia. The LPS treated microglia progressed through distinct morphological states and expressed high levels of ROS and formed large cellular aggregates. Recent evidence implicates leucine-rich repeat kinase 2 (LRRK2) as an important player in the microglial inflammatory state, as well as in the genesis of PD. We found that inhibition of the LRRK2 signaling pathway using the kinase inhibitor cis-2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine (MLi2) or inhibition of the actin regulatory protein, Wiskott-Aldrich syndrome family Verprolin-homologous Protein-2 (WAVE2), stunted microglial activation and prevented neurotoxicity. Furthermore, inhibition of LRRK2 kinase activity reduced pro-inflammatory chemokines including MIP-2, CRG-2, and RANTES. These data together support the notion that LRRK2 and WAVE2 are important mediators of cytokine production and cytoskeletal rearrangement necessary for microglial-induced neurotoxicity. Furthermore, our model demonstrated unique microglial phenotypic changes that might be mechanistically important for better understanding neuron-microglial crosstalk.


Subject(s)
Neurotoxicity Syndromes , Parkinson Disease , Chemokines/metabolism , Glutamates/genetics , Glutamates/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , Microglia/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism
3.
J Mol Histol ; 45(3): 349-61, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24374887

ABSTRACT

Brain derived neurotrophic factor (BDNF) is a potent mediator of cell survival and differentiation and can reverse neuronal injury associated with Parkinson's disease (PD). Tropomyosin receptor kinase B (trkB) is the high affinity receptor for BDNF. There are two major trkB isoforms, the full-length receptor (trkB.tk(+)) and the truncated receptor (trkB.t1), that mediate the diverse, region specific functions of BDNF. Both trkB isoforms are widely distributed throughout the brain, but the isoform specific distribution of trkB.t1 and trkB.tk(+) to human neurons is not well characterized. Therefore, we report the regional and neuronal distribution of trkB.tk(+) and trkB.t1 in the striatum and substantia nigra pars compacta (SNpc) of human autopsy tissues from control and PD cases. In both PD and control tissues, we found abundant, punctate distribution of trkB.tk(+) and trkB.t1 proteins in striatum and SNpc neurons. In PD, trkB.tk(+) is decreased in striatal neurites, increased in striatal somata, decreased in SNpc somata and dendrites, and increased in SNpc axons. TrkB.t1 is increased in striatal somata, decreased in striatal axons, and increased in SNpc distal dendrites. We believe changes in trkB isoform distribution and expression levels may be markers of pathology and affect the neuronal response to BDNF.


Subject(s)
Corpus Striatum/metabolism , Protein Kinases/metabolism , Substantia Nigra/metabolism , Aged , Aged, 80 and over , Brain-Derived Neurotrophic Factor/metabolism , Case-Control Studies , Gene Expression , Humans , Immunohistochemistry , Intracellular Space/metabolism , Male , Membrane Glycoproteins , Middle Aged , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Isoforms , Protein Kinases/genetics , Protein Transport , Protein-Tyrosine Kinases , Receptor, trkB
SELECTION OF CITATIONS
SEARCH DETAIL