ABSTRACT
U.S. black raspberry (BR) production is currently limited by narrowly adapted, elite germplasm. An improved understanding of genetic control and the stability of pomological traits will inform the development of improved BR germplasm and cultivars. To this end, the analysis of a multiple-environment trial of a BR mapping population derived from a cross that combines wild ancestors introgressed with commercial cultivars on both sides of its pedigree has provided insights into genetic variation, genotype-by-environment interactions, quantitative trait loci (QTL), and QTL-by-environment interactions (QEI) of fruit quality traits among diverse field environments. The genetic components and stability of four fruit size traits and six fruit biochemistry traits were characterized in this mapping population following their evaluation over three years at four distinct locations representative of current U.S. BR production. This revealed relatively stable genetic control of the four fruit size traits across the tested production environments and less stable genetic control of the fruit biochemistry traits. Of the fifteen total QTL, eleven exhibited significant QEI. Closely overlapping QTL revealed the linkage of several fruit size traits: fruit mass, drupelet count, and seed fraction. These and related findings are expected to guide further genetic characterization of BR fruit quality, management of breeding germplasm, and development of improved BR cultivars for U.S. production.
Subject(s)
Rubus , Chromosome Mapping , Genetic Linkage , Plant Breeding , Quantitative Trait Loci , Rubus/geneticsABSTRACT
Charcoal rot caused by Macrophomina phaseolinais an increasing economic problem in annualized strawberry production systems around the world. Currently there are no effective postfumigation chemical controls for managing charcoal rot, and no information is available on the genetic architecture of resistance to M. phaseolina in strawberry (Fragaria ×ananassa). In this study, three multiparental discovery populations and two validation populations were inoculated at planting and evaluated for mortality in three consecutive growing seasons. Genome-wide SNP genotyping and pedigree-based analysis with FlexQTL™ software were performed. Two large-effect quantitative trait loci (QTL) increasing charcoal rot resistance were discovered and validated in cultivated germplasm. FaRMp1 was located on linkage group 2A in the interval 20.4to 24.9 cM, while FaRMp2 was located on linkage group 4B in the interval 41.1to 61.2 cM. Together these QTLs explained 27% and 17% of the phenotypic variance in two discovery populations consisting of elite breeding germplasm. For both QTLs, the resistant allele showed some evidence of partial dominance, but no significant interaction was detected between the two loci. As the dosage of resistant alleles increased from 0 to 4 across the two QTLs, mortality decreased regardless of the combination of alleles.A third locus, FaRMp3 on 4D, was discovered in FVC 11-58, a reconstituted F.×ananassa originating from diverse F. virginiana and F. chiloensis accessions. This locus accounted for 44% of phenotypic variation in four segregating crosses. These findings will form the basis for DNA-informed breeding for resistance to charcoal rot in cultivated strawberry.
Subject(s)
Fragaria , Ascomycota , Chromosome Mapping , Disease Resistance , Fragaria/genetics , Phenotype , Plant Breeding , Plant DiseasesABSTRACT
A Rosaceae family-level candidate gene approach was used to identify genes associated with sugar content in blackberry (Rubus subgenus Rubus). Three regions conserved among apple (Malus × domestica), peach (Prunus persica), and alpine strawberry (Fragaria vesca) were identified that contained previously detected sweetness-related quantitative trait loci (QTL) in at least two of the crops. Sugar related genes from these conserved regions and 789 sugar-associated apple genes were used to identify 279 Rubus candidate transcripts. A Hyb-Seq approach was used in conjunction with PacBio sequencing to generate haplotype level sequence information of sugar-related genes for 40 cultivars with high and low soluble solids content from the University of Arkansas and USDA blackberry breeding programs. Polymorphisms were identified relative to the 'Hillquist' blackberry (R. argutus) and ORUS 4115-3 black raspberry (R. occidentalis) genomes and tested for their association with soluble solids content (SSC). A total of 173 alleles were identified that were significantly (α = 0.05) associated with SSC. KASP genotyping was conducted for 92 of these alleles on a validation set of blackberries from each breeding program and 48 markers were identified that were significantly associated with SSC. One QTL, qSSC-Ruh-ch1.1, identified in both breeding programs accounted for an increase of 1.5 °Brix and the polymorphisms were detected in the intron space of a sucrose synthase gene. This discovery represents the first environmentally stable sweetness QTL identified in blackberry. The approach demonstrated in this study can be used to develop breeding tools for other crops that have not yet benefited directly from the genomics revolution.
Subject(s)
Fragaria , Malus , Rosaceae , Rubus , DNA , Fragaria/genetics , Fruit , Malus/genetics , Plant Breeding , Rosaceae/genetics , Rubus/geneticsABSTRACT
Background: The fragmented nature of most draft plant genomes has hindered downstream gene discovery, trait mapping for breeding, and other functional genomics applications. There is a pressing need to improve or finish draft plant genome assemblies. Findings: Here, we present a chromosome-scale assembly of the black raspberry genome using single-molecule real-time Pacific Biosciences sequencing and high-throughput chromatin conformation capture (Hi-C) genome scaffolding. The updated V3 assembly has a contig N50 of 5.1 Mb, representing an â¼200-fold improvement over the previous Illumina-based version. Each of the 235 contigs was anchored and oriented into seven chromosomes, correcting several major misassemblies. Black raspberry V3 contains 47 Mb of new sequences including large pericentromeric regions and thousands of previously unannotated protein-coding genes. Among the new genes are hundreds of expanded tandem gene arrays that were collapsed in the Illumina-based assembly. Detailed comparative genomics with the high-quality V4 woodland strawberry genome (Fragaria vesca) revealed near-perfect 1:1 synteny with dramatic divergence in tandem gene array composition. Lineage-specific tandem gene arrays in black raspberry are related to agronomic traits such as disease resistance and secondary metabolite biosynthesis. Conclusions: The improved resolution of tandem gene arrays highlights the need to reassemble these highly complex and biologically important regions in draft plant genomes. The updated, high-quality black raspberry reference genome will be useful for comparative genomics across the horticulturally important Rosaceae family and enable the development of marker assisted breeding in Rubus.
Subject(s)
Genome, Plant , Rubus/genetics , Sequence Analysis, DNA , Chromosomes, Plant , GenomicsABSTRACT
Black raspberry (Rubus occidentalis L.) is a niche fruit crop valued for its flavor and potential health benefits. The improvement of fruit and cane characteristics via molecular breeding technologies has been hindered by the lack of a high-quality reference genome. The recently released draft genome for black raspberry (ORUS 4115-3) lacks assembly of scaffolds to chromosome scale. We used high-throughput chromatin conformation capture (Hi-C) and Proximity-Guided Assembly (PGA) to cluster and order 9650 out of 11,936 contigs of this draft genome assembly into seven pseudo-chromosomes. The seven pseudo-chromosomes cover ~97.2% of the total contig length (~223.8 Mb). Locating existing genetic markers on the physical map resolved multiple discrepancies in marker order on the genetic map. Centromeric regions were inferred from recombination frequencies of genetic markers, alignment of 303 bp centromeric sequence with the PGA, and heat map showing the physical contact matrix over the entire genome. We demonstrate a high degree of synteny between each of the seven chromosomes of black raspberry and a high-quality reference genome for strawberry (Fragaria vesca L.) assembled using only PacBio long-read sequences. We conclude that PGA is a cost-effective and rapid method of generating chromosome-scale assemblies from Illumina short-read sequencing data.
ABSTRACT
The cultivated strawberry (Fragaria×ananassa) is consumed worldwide for its flavor and nutritional benefits. Genetic analysis of commercially important traits in strawberry are important for the development of breeding methods and tools for this species. Although several quantitative trait loci (QTL) have been previously detected for fruit quality and flowering traits using low-density genetic maps, clarity on the sub-genomic locations of these QTLs was missing. Recent discoveries in allo-octoploid strawberry genomics led to the development of the IStraw90 single-nucleotide polymorphism (SNP) array, enabling high-density genetic maps and finer resolution QTL analysis. In this study, breeder-specified traits were evaluated in the Eastern (Michigan) and Western (Oregon) United States for a common set of breeding populations during 2 years. Several QTLs were validated for soluble solids content (SSC), fruit weight (FWT), pH and titratable acidity (TA) using a pedigree-based QTL analysis approach. For fruit quality, a QTL for SSC on linkage group (LG) 6A, a QTL for FWT on LG 2BII, a QTL for pH on LG 4CII and two QTLs for TA on LGs 2A and 5B were detected. In addition, a large-effect QTL for flowering was detected at the distal end of LG 4A, coinciding with the FaPFRU locus. Marker haplotype analysis in the FaPFRU region indicated that the homozygous recessive genotype was highly predictive of seasonal flowering. SNP probes in the FaPFRU region may help facilitate marker-assisted selection for this trait.
ABSTRACT
Much of the cost associated with marker discovery for marker assisted breeding (MAB) can be eliminated if a diverse, segregating population is generated, genotyped, and made available to the global breeding community. Herein, we present an example of a hybrid, wild-derived family of the octoploid strawberry that can be used by other breeding programs to economically find and tag useful genes for MAB. A pseudo test cross population between two wild species of Fragaria virginiana and F. chiloensis (FVC 11) was generated and evaluated for a set of phenotypic traits. A total of 106 individuals in the FVC 11 were genotyped for 29,251 single nucleotide polymorphisms (SNPs) utilizing a commercially available, genome-wide scanning platform (Affymetrix Axiom IStraw90(TW)). The marker trait associations were deduced using TASSEL software. The FVC 11 population segregating for daughters per mother, inflorescence number, inflorescence height, crown production, flower number, fruit size, yield, internal color, soluble solids, fruit firmness, and plant vigor. Coefficients of variations ranged from 10% for fruit firmness to 68% for daughters per mother, indicating an underlying quantitative inheritance for each trait. A total of 2,474 SNPs were found to be polymorphic in FVC 11 and strong marker trait associations were observed for vigor, daughters per mother, yield and fruit weight. These data indicate that FVC 11 can be used as a reference population for quantitative trait loci detection and subsequent MAB across different breeding programs and geographical locations.
ABSTRACT
Black raspberry (Rubus occidentalis) is an important specialty fruit crop in the US Pacific Northwest that can hybridize with the globally commercialized red raspberry (R. idaeus). Here we report a 243 Mb draft genome of black raspberry that will serve as a useful reference for the Rosaceae and Rubus fruit crops (raspberry, blackberry, and their hybrids). The black raspberry genome is largely collinear to the diploid woodland strawberry (Fragaria vesca) with a conserved karyotype and few notable structural rearrangements. Centromeric satellite repeats are widely dispersed across the black raspberry genome, in contrast to the tight association with the centromere observed in most plants. Among the 28 005 predicted protein-coding genes, we identified 290 very recent small-scale gene duplicates enriched for sugar metabolism, fruit development, and anthocyanin related genes which may be related to key agronomic traits during black raspberry domestication. This contrasts patterns of recent duplications in the wild woodland strawberry F. vesca, which show no patterns of enrichment, suggesting gene duplications contributed to domestication traits. Expression profiles from a fruit ripening series and roots exposed to Verticillium dahliae shed insight into fruit development and disease response, respectively. The resources presented here will expedite the development of improved black and red raspberry, blackberry and other Rubus cultivars.
Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Rubus/genetics , Rubus/microbiology , Centromere/genetics , Chromosome Mapping , Disease Resistance/genetics , Fruit/genetics , Fruit/physiology , Gene Duplication , Genomics/methods , Plant Diseases/genetics , Plant Diseases/microbiology , Rosaceae/genetics , Sequence Analysis, DNA , Verticillium/pathogenicityABSTRACT
KEY MESSAGE: We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance. Black raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3-4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.
Subject(s)
Aphids , Chromosome Mapping , Genetic Linkage , Rubus/genetics , Animals , Breeding , Chromosomes, Plant , DNA, Plant/genetics , Genetic Markers , Genetics, Population , Herbivory , Microsatellite Repeats , Polymorphism, Single NucleotideABSTRACT
In the U.S., there has been a recent surge in Korean black raspberry products available and in the number of reports about this species appearing in the scientific literature. Despite this, the majority of products sold and the work carried out has been on Rubus occidentalis L., not R. coreanus Miquel. The importance of accurate recognition of all starting material is multiplied for research downstream, including genetics/genomics, plant breeding, phenolic identification, food processing improvements and pharmacokinetic investigations. An overview of distinguishing characteristics separating R. coreanus from R. occidentalis will be presented. Research conducted on correctly identified fruit will also be summarized to aid future studies that might showcase the unique qualities that bokbunja can offer.
Subject(s)
Food Analysis , Fruit/chemistry , Phenols/analysis , Rubus/chemistry , Rubus/classificationABSTRACT
BACKGROUND: Elderberry (Sambucus spp.) fruit are used for food and dietary supplements in Europe and North America, and contain large amounts of cyanidin-based anthocyanins and other phenolics that may benefit human health. OBJECTIVES: Information on the effect of both genotype and production environment on elderberry juice characteristics is needed in order to optimize production of quality food and dietary supplements. METHODS: The characteristics of elderberry fruits relative to genetic and production environment were evaluated from 12 American elderberry genotypes at three U.S. sites (two in Missouri and one in Oregon) over three growing seasons. Additional genotypes of American and European elderberry were studied at the Oregon site. RESULTS: Location, genotype, and growing season influenced pH, soluble solids, titratable acidity, total phenolics, and total anthocyanins. Elderberries grown in Oregon were consistently higher in acidity than those grown in Missouri. Differences in acidity and anthocyanin with environment were dependent on genotype. Non-acylated anthocyanins and flavonol-glycosides were more influenced by location than by genotype. CONCLUSION: 'Bob Gordon' and 'Adams 2' genotypes, which are good producers in diverse environments, were significantly higher in total phenolic and total anthocyanin contents in all locations, and may be good selections for producing juices, wines, or health products.
ABSTRACT
Glycosidically bound volatiles and precursors in genotypes representing the pedigree for 'Marion' blackberry were investigated over two growing seasons. The volatile precursors were isolated using a C18 solid-phase extraction column. After enzymatic hydrolysis, the released volatiles were analyzed using stir bar sorptive extraction gas chromatography-mass spectrometry (GC-MS) and direct microvial insert thermal desorption GC-MS. The most abundant volatile precursors in the genotypes were alcohols, followed by shikimic acid derivatives. High amounts of furanone glycosides were also detected, while norisoprenoids only existed in a small amount in blackberries. The volatile precursor composition in the genotypes in the 'Marion' pedigree was very similar to their free volatile distribution. 'Logan' and 'Olallie' predominantly had bound norisoprenoids. Wild 'Himalaya' predominated with terpene alcohol and furaneol glycosides, whereas 'Santiam' and 'Chehalem' contained a high level of terpene alcohol glycosides. A similar inheritance pattern was also observed for some volatile precursors in the genotypes in the 'Marion' pedigree. A high content of linalool, hydroxylinalool, and alpha-ionol glycosides in 'Olallie' and a low content in 'Chehalem' resulted in a moderate level in their offspring 'Marion', while a low content of (E)-linalool oxide precursor in 'Olallie' and a high content in 'Chehalem' also resulted in a moderate level in 'Marion'. However, the concentration of furaneol glycosides in 'Marion' exceeded that of its two parents.
Subject(s)
Rosaceae/chemistry , Volatile Organic Compounds/analysis , Fruit/chemistry , Fruit/genetics , Genotype , Rosaceae/geneticsABSTRACT
BACKGROUND: Ten genotypes representing two elderberry species, Sambucus canadensis L. (eight genotypes) and S. nigra L. (two genotypes), were examined for their anthocyanins (ACY), total phenolics (TP),°Brix, titratable acidity (TA), and pH over two growing seasons. RESULTS: Overall, fruit generally had higher ACY, TP, ACY/TP,°Brix, and pH in 2005 than 2004. All samples of S. canadensis had similar anthocyanin profiles to one another, but were distinctly different from S. nigra. Both species had cyanidin-based anthocyanins as major pigments. Previously unreported anthocyanins were identified in some samples in this study. Trace levels of delphinidin 3-rutinoside were present in all elderberry samples except cv. 'Korsør'. Also, petunidin 3-rutinoside was detected in cvs 'Adams 2', 'Johns', 'Scotia', 'York', and 'Netzer' (S. canadensis). The identified polyphenolics of both species were mainly composed of cinnamic acids and flavonol glycosides. The major polyphenolic compounds present in S. canadensis were neochlorogenic acid, chlorogenic acid, rutin, and isorhamnetin 3-rutinoside, while chlorogenic acid and rutin were found to be major polyphenolic compounds in S. nigra. CONCLUSION: Sufficient variability was seen among these genotypes to suggest that a successful breeding program could be carried out to improve levels of the various compounds evaluated in this study. Copyright © 2007 Society of Chemical Industry.
ABSTRACT
The meristematic tissues of temperate woody perennials must acclimate to freezing temperatures to survive the winter and resume growth the following year. To determine whether the C-repeat binding factor (CBF) family of transcription factors contributing to this process in annual herbaceous species also functions in woody perennials, we investigated the changes in phenotype and transcript profile of transgenic Populus constitutively expressing CBF1 from Arabidopsis (AtCBF1). Ectopic expression of AtCBF1 was sufficient to significantly increase the freezing tolerance of non-acclimated leaves and stems relative to wild-type plants. cDNA microarray experiments identified genes up-regulated by ectopic AtCBF1 expression in Populus, demonstrated a strong conservation of the CBF regulon between Populus and Arabidopsis and identified differences between leaf and stem regulons. We studied the induction kinetics and tissue specificity of four CBF paralogues identified from the Populus balsamifera subsp. trichocarpa genome sequence (PtCBFs). All four PtCBFs are cold-inducible in leaves, but only PtCBF1 and PtCBF3 show significant induction in stems. Our results suggest that the central role played by the CBF family of transcriptional activators in cold acclimation of Arabidopsis has been maintained in Populus. However, the differential expression of the PtCBFs and differing clusters of CBF-responsive genes in annual (leaf) and perennial (stem) tissues suggest that the perennial-driven evolution of winter dormancy may have given rise to specific roles for these 'master-switches' in the different annual and perennial tissues of woody species.
Subject(s)
Adaptation, Physiological , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Freezing , Populus/metabolism , Regulon/genetics , Signal Transduction , Trans-Activators/metabolism , Abscisic Acid/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Cluster Analysis , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Disasters , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genome, Plant/genetics , Microarray Analysis , Molecular Sequence Data , Plant Leaves/physiology , Plant Stems/physiology , Plants, Genetically Modified , Populus/genetics , Populus/physiology , Response Elements/genetics , Trans-Activators/chemistry , Trans-Activators/genetics , Transcription Factors/metabolism , Up-Regulation/geneticsABSTRACT
Total anthocyanin pigments increased from 74.7 to 317 mg/100 g fresh weight (FW) from underripe to overripe for Marion blackberries and from 69.9 to 164 mg/100 g FW for Evergreen blackberries. Total phenolics did not show a marked change with maturity with values slightly decreasing from underripe to ripe. Antioxidant activities, while increasing with ripening, also did not show the marked change that total anthocyanins exhibited. The impact of variation due to plots, subsampling, sample preparation, and measurement on Marion composition was examined in detail. Plot-to-plot and sample differences were the major contributors to variation, with sample preparation being an important contributor for some parameters. Measurement variation was a relatively small component of the total variation. Total anthocyanins for 11 blackberry cultivars ranged from 131 to 256 mg/100 g FW (mean = 198), total phenolics ranged from 682 to 1056 mg GAE/100 g FW (mean = 900), oxygen radical absorbance capacity ranged from 37.6 to 75.5 micromol TE/g FW (mean = 50.2), and ferric reducing antioxidant power ranged from 63.5 to 91.5 micromol TE/g FW (mean = 77.5).
Subject(s)
Anthocyanins/analysis , Antioxidants/analysis , Fruit/chemistry , Fruit/growth & development , Rosaceae/chemistry , Flavonoids/analysis , Food Handling/methods , Phenols/analysis , Polyphenols , Rosaceae/growth & developmentABSTRACT
Two huckleberry species, Vaccinium membranaceum and Vaccinium ovatum, native to Pacific Northwestern North America, were evaluated for their total, and individual, anthocyanin and polyphenolic compositions. Vaccinium ovatum had greater total anthocyanin (ACY), total phenolics (TP), oxygen radical absorbing capacity (ORAC), and ferric reducing antioxidant potential (FRAP) than did V. membranaceum. The pH and degrees Brix were also higher in V. ovatum. Berry extracts from each species were separated into three different fractions--anthocyanin, polyphenolic, and sugar/acid-by solid-phase extraction. The anthocyanin fractions of each species had the highest amount of ACY, TP, and antioxidant activity. Each species contained 15 anthocyanins (galactoside, glucoside, and arabinoside of delphinidin, cyanidin, petunidin, peonidin, and malvidin) but in different proportions. Their anthocyanin profiles were similar by high-performance liquid chromatography with photodiode array detection (LC-DAD) and high-performance liquid chromatography with photodiode array and mass spectrometry detections (LC-DAD-MS). Each species had a different polyphenolic profile. The polyphenolics of both species were mainly composed of cinnamic acid derivatives and flavonol glycosides. The major polyphenolic compound in V. membranaceum was neochlorogenic acid, and in V. ovatum, chlorogenic acid.
Subject(s)
Anthocyanins/analysis , Flavonoids/analysis , Fruit/chemistry , Phenols/analysis , Vaccinium/chemistry , Chromatography, High Pressure Liquid , Oregon , Polyphenols , Species SpecificityABSTRACT
Fruits from 107 genotypes of Vaccinium L., Rubus L., and Ribes L., were analyzed for total anthocyanins (ACY), total phenolics (TPH), and antioxidant capacities as determined by oxygen radical absorbing capacity (ORAC) and ferric reducing antioxidant power (FRAP). Fruit size was highly correlated (r = 0.84) with ACY within Vaccinium corymbosum L., but was not correlated to ACY across eight other Vaccinium species, or within 27 blackberry hybrids. Certain Vaccinium and Ribes fruits with pigmented flesh were lower in ACY, TPH, ORAC, and FRAP compared to those values in berries with nonpigmented flesh. ORAC values ranged from 19 to 131 micromol Trolox equivalents/g in Vaccinium, from 13 to 146 in Rubus, and from 17 to 116 in Ribes. Though ACY may indicate TPH, the range observed in ACY/TPH ratios precludes prediction of ACY from TPH and vice versa for a single genotype. In general, TPH was more highly correlated to antioxidant capacity than ACY was. This study demonstrates the wide diversity of phytochemical levels and antioxidant capacities within and across three genera of small fruit.