Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
BMC Biotechnol ; 24(1): 63, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313794

ABSTRACT

BACKGROUND: Vibrio natriegens, a halophilic marine γ-proteobacterium, holds immense biotechnological potential due to its remarkably short generation time of under ten minutes. However, the highest growth rates have been primarily observed on complex media, which often suffer from batch-to-batch variability affecting process stability and performance. Consistent bioprocesses necessitate the use of chemically defined media, which are usually optimized for fermenters with pH and dissolved oxygen tension (DOT) regulation, both of which are not applied during early-stage cultivations in shake flasks or microtiter plates. Existing studies on V. natriegens' growth on mineral media report partially conflicting results, and a comprehensive study examining the combined effects of pH buffering, sodium concentration, and medium osmolality is lacking. RESULTS: This study evaluates the influence of sodium concentration, pH buffering, and medium osmolality on the growth of V. natriegens under unregulated small-scale conditions. The maximum growth rate, time of glucose depletion, as well as the onset of stationary phase were observed through online-monitoring the oxygen transfer rate. The results revealed optimal growth conditions at an initial pH of 8.0 with a minimum of 300 mM MOPS buffer for media containing 20 g/L glucose or 180 mM MOPS for media with 10 g/L glucose. Optimal sodium chloride supplementation was found to be between 7.5 and 15 g/L, lower than previously reported ranges. This is advantageous for reducing industrial corrosion issues. Additionally, an osmolality range of 1 to 1.6 Osmol/kg was determined to be optimal for growth. Under these optimized conditions, V. natriegens achieved a growth rate of 1.97 ± 0.13 1/h over a period of 1 h at 37 °C, the highest reported rate for this organism on a mineral medium. CONCLUSION: This study provides guidelines for cultivating V. natriegens in early-stage laboratory settings without pH and DOT regulation. The findings suggest a lower optimal sodium chloride range than previously reported and establish an osmolality window for optimal growth, thereby advancing the understanding of V. natriegens' physiology. In addition, this study offers a foundation for future research into the effects of different ions and carbon sources on V. natriegens.


Subject(s)
Batch Cell Culture Techniques , Culture Media , Vibrio , Hydrogen-Ion Concentration , Osmolar Concentration , Vibrio/growth & development , Vibrio/drug effects , Culture Media/chemistry , Batch Cell Culture Techniques/methods , Sodium/metabolism , Sodium/pharmacology , Oxygen/metabolism , Bioreactors
2.
Biotechnol Biofuels Bioprod ; 17(1): 92, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961457

ABSTRACT

BACKGROUND: An important step in replacing petrochemical products with sustainable, cost-effective alternatives is the use of feedstocks other than, e.g., pure glucose in the fermentative production of platform chemicals. Ustilaginaceae offer the advantages of a wide substrate spectrum and naturally produce a versatile range of value-added compounds under nitrogen limitation. A promising candidate is the dicarboxylic acid malic acid, which may be applied as an acidulant in the food industry, a chelating agent in pharmaceuticals, or in biobased polymer production. However, fermentable residue streams from the food and agricultural industry with high nitrogen content, e.g., sugar beet molasses, are unsuited for processes with Ustilaginaceae, as they result in low product yields due to high biomass and low product formation. RESULTS: This study uncovers challenges in evaluating complex feedstock applicability for microbial production processes, highlighting the role of secondary substrate limitations, internal storage molecules, and incomplete assimilation of these substrates. A microliter-scale screening method with online monitoring of microbial respiration was developed using malic acid production with Ustilago trichophora on molasses as an application example. Investigation into nitrogen, phosphate, sulphate, and magnesium limitations on a defined minimal medium demonstrated successful malic acid production under nitrogen and phosphate limitation. Furthermore, a reduction of nitrogen and phosphate in the elemental composition of U. trichophora was revealed under the respective secondary substrate limitation. These adaptive changes in combination with the intricate metabolic response hinder mathematical prediction of product formation and make the presented screening methodology for complex feedstocks imperative. In the next step, the screening was transferred to a molasses-based complex medium. It was determined that the organism assimilated only 25% and 50% of the elemental nitrogen and phosphorus present in molasses, respectively. Due to the overall low content of bioavailable phosphorus in molasses, the replacement of the state-of-the-art nitrogen limitation was shown to increase malic acid production by 65%. CONCLUSION: The identification of phosphate as a superior secondary substrate limitation for enhanced malic acid production opens up new opportunities for the effective utilization of molasses as a more sustainable and cost-effective substrate than, e.g., pure glucose for biobased platform chemical production.

3.
Sci Total Environ ; 905: 167035, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37709100

ABSTRACT

The Ames test is one of the most applied tools in mutagenicity testing of chemicals ever since its introduction by Ames et al. in the 1970s. Its principle is based on histidine auxotrophic bacteria that regain prototrophy through reverse mutations. In the presence of a mutagen, more reverse mutations occur that become visible as increased bacterial growth on medium without histidine. Many miniaturized formats of the Ames test have emerged to enable the testing of environmental water samples, increase experimental throughput, and lower the required amounts of test substances. However, most of these formats still rely on endpoint determinations. In contrast, the recently introduced Ames RAMOS test determines mutagenicity through online monitoring of the oxygen transfer rate. In this study, the oxygen transfer rate of Salmonella typhimurium TA100 during the Ames plate incorporation test was monitored and compared to the Ames RAMOS test to prove its validity further. Furthermore, the Ames RAMOS test in 96-well scale is newly introduced. For both the Ames plate incorporation and the Ames RAMOS test, the influence of the inoculum cell count on the negative control was highlighted: A lower inoculum cell count led to a higher coefficient of variation. However, a lower inoculum cell count also led to a higher separation efficiency in the Ames RAMOS test and, thus, to better detection of a mutagenic substance at lower concentrations.


Subject(s)
Histidine , Salmonella typhimurium , Histidine/genetics , Salmonella typhimurium/genetics , Mutagens/toxicity , Mutagens/chemistry , Mutation , Mutagenicity Tests , Oxygen
4.
Biotechnol Prog ; 34(6): 1543-1552, 2018 11.
Article in English | MEDLINE | ID: mdl-30248250

ABSTRACT

BACKGROUND: The oxygen transfer rate (OTR) and the biomass concentration are two important parameters describing a microbial fermentation. It has been shown before that from the course of these parameters over time information on metabolic burden during heterologous protein production can be obtained. While online monitoring in large fermenters is ubiquitously established, it is still not a common practice in small-scale cultures. Nevertheless, several techniques like the Respiration Activity MOnitoring System (RAMOS) device for online monitoring of the OTR in shake flasks and the BioLector device for measuring scattered light (ScL) representing biomass in microtiter plates have been developed. RESULTS: A new microtiter plate-based method is presented that reveals how online derived ScL signals can be transformed into signals that are proportional to the courses of OTR over time for Escherichia coli. The transformed signal is obtained by simply taking the first derivative of ScL (dScL/dt). The proportionality of both parameters is successfully validated for the strains E. coli BL21(DE3) and Tuner(DE3) expressing cellulases and the fluorescent protein FbFP, respectively. Relative amounts of produced heterologous proteins are predicted exclusively based on the course of the transformed ScL signal. A variety of induction conditions with varying inducer concentration and induction time were investigated with this method. CONCLUSION: The presented method based on ScL measurement allows for high-throughput online determination of signals proportional to OTR courses. They enable the interpretation of physiological states and offer the possibility to predict the recombinant protein production in E. coli. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1543-1552, 2018.


Subject(s)
Escherichia coli/metabolism , Recombinant Proteins/metabolism , Escherichia coli/genetics , Fermentation/genetics , Fermentation/physiology , Light , Recombinant Proteins/genetics
5.
Microb Cell Fact ; 16(1): 220, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29183374

ABSTRACT

BACKGROUND: Escherichia coli (E. coli) is the most abundant expression host for recombinant proteins. The production efficiency is dependent on a multitude of parameters. Therefore, high-throughput applications have become an increasingly frequent technique to investigate the main factors. Within this study, the effects of temperature, induction time and inducer concentration on the metabolic state and the product formation were extensively examined. Induction profiling of E. coli Tuner(DE3) pRhotHi-2-EcFbFP was performed in 48-well Flowerplates and standard 96-well plates using a robotic platform. In parallel shake flask cultivations, the respiration activity of the microorganisms was analyzed. Therefore, two online-monitoring systems were applied: the BioLector for microtiter plates and the RAMOS-device for shake flasks. The impact of different induction conditions on biomass and product formation as well as on the oxygen transfer rate was surveyed. RESULTS: Different optimal induction conditions were obtained for temperatures of 28, 30, 34, and 37 °C. The best inducer concentrations were determined to be between 0.05 and 0.1 mM IPTG for all investigated temperatures. This is 10-20 times lower than conventional guidelines suggest. The induction time was less relevant when the correct inducer concentration was chosen. Furthermore, there was a stronger impact on growth and respiration activity at higher temperatures. This indicated a higher metabolic burden. Therefore, lower IPTG concentrations were advantageous at elevated temperatures. Very similar results were obtained in standard 96-well plates. CONCLUSION: Two online-monitoring systems were successfully used to investigate the optimal induction conditions for the E. coli Tuner(DE3) pRhotHi-2-EcFbFP strain (lacY deletion mutant) at four different temperatures. The experimental effort was reduced to a minimum by integrating a liquid handling robot. To reach the maximum product formation, a detailed induction analysis was necessary. Whenever the cultivation temperature was changed, the induction conditions have to be adapted. Due to the experimental options provided by the BioLector technology, it was found that the higher the cultivation temperature, the lower the inducer concentration that has to be applied.


Subject(s)
High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Recombinant Proteins/genetics , Temperature , Automation , Biomass , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Isopropyl Thiogalactoside/pharmacology , Monosaccharide Transport Proteins , Oxygen/metabolism , Protein Processing, Post-Translational , Recombinant Proteins/biosynthesis , Symporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL