Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 592
Filter
1.
Hepatol Commun ; 8(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967597

ABSTRACT

BACKGROUND: People with primary sclerosing cholangitis (PSC) have a 20% lifetime risk of biliary tract cancer (BTC). Using whole-exome sequencing, we characterized genomic alterations in tissue samples from BTC with underlying PSC. METHODS: We extracted DNA from formalin-fixed, paraffin-embedded tumor and paired nontumor tissue from 52 resection or biopsy specimens from patients with PSC and BTC and performed whole-exome sequencing. Following copy number analysis, variant calling, and filtering, putative PSC-BTC-associated genes were assessed by pathway analyses and annotated to targeted cancer therapies. RESULTS: We identified 53 candidate cancer genes with a total of 123 nonsynonymous alterations passing filtering thresholds in 2 or more samples. Of the identified genes, 19% had not previously been implicated in BTC, including CNGA3, KRT28, and EFCAB5. Another subset comprised genes previously implicated in hepato-pancreato-biliary cancer, such as ARID2, ELF3, and PTPRD. Finally, we identified a subset of genes implicated in a wide range of cancers such as the tumor suppressor genes TP53, CDKN2A, SMAD4, and RNF43 and the oncogenes KRAS, ERBB2, and BRAF. Focal copy number variations were found in 51.9% of the samples. Alterations in potential actionable genes, including ERBB2, MDM2, and FGFR3 were identified and alterations in the RTK/RAS (p = 0.036), TP53 (p = 0.04), and PI3K (p = 0.043) pathways were significantly associated with reduced overall survival. CONCLUSIONS: In this exome-wide characterization of PSC-associated BTC, we delineated both PSC-specific and universal cancer genes. Our findings provide opportunities for a better understanding of the development of BTC in PSC and could be used as a platform to develop personalized treatment approaches.


Subject(s)
Biliary Tract Neoplasms , Cholangitis, Sclerosing , Exome Sequencing , Humans , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/complications , Biliary Tract Neoplasms/genetics , Male , Female , Middle Aged , Adult , Aged , DNA Copy Number Variations , Genes, Neoplasm/genetics
2.
J Crohns Colitis ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022905

ABSTRACT

BACKGROUND AND AIMS: Colonic epithelial barrier dysfunction is one of the early events in ulcerative colitis (UC) and microRNAs (miRNAs) participate in its regulation. However, cell type-specific miRNome during UC is still unknown. Thus, we aimed to explore miRNA expression patterns in colon tissue and epithelial cells at active and quiescent UC. METHODS: Small RNA-sequencing in colon tissue, crypt-bottom (CD44+), and crypt-top (CD66a+) colonic epithelial cells from two cohorts of UC patients (n=74) and healthy individuals (n=50) was performed. Data analysis encompassed differential expression, weighted gene co-expression network, correlation, gene-set enrichment analyses. RESULTS: Differentially expressed colonic tissue miRNAs showed potential involvement in regulation of interleukin-4 and interleukin-13 signalling during UC. As this pathway plays role in intestinal barrier regulation, consecutive analysis of spatially distinct colonic epithelial cell populations was performed. Cell-type (crypt-top and crypt-bottom) specific miRNA expression patterns were identified in both active and quiescent UC. Target genes of differentially expressed epithelial miRNAs at different disease activity were overrepresented in epithelial cell migration and therefore intestinal barrier integrity regulation. The pro-inflammatory miRNA co-expression module M1 correlated with endoscopic disease activity and successfully distinguished active and quiescent UC not only in both epithelial cell populations, but also in the colon tissue. The anti-inflammatory module M2 was specific to crypt-bottom cells and significantly enriched in the quiescent UC patients. CONCLUSIONS: miRNA expression was specific to colonic epithelial cell populations and UC state, reflecting endoscopic disease activity. Irrespective of the UC state, deregulated epithelial miRNAs were associated with regulation of intestinal barrier integrity.

3.
HGG Adv ; 5(4): 100323, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944683

ABSTRACT

Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10-10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10-15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway.

4.
J Wound Care ; 33(6): 394-407, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38843016

ABSTRACT

OBJECTIVE: Hard-to-heal (chronic) wounds are common in patients with diabetes and are associated with a decrease in quality of life (QoL). Pathogenic bacteria often colonise hard-to-heal wounds and hinder the healing process which poses a high risk for (systemic) infections. In this study, we aim to prove that probiotics are capable of displacing human pathogenic bacteria, ameliorating inflammation and positively influencing the microenvironment/microbiome of skin and mucosa. METHOD: In this pilot study, patients with diabetes and hard-to-heal wounds with a duration of 2-120 months received an oral multispecies probiotic daily for six months. Changes in oral, stool and wound microbiome were investigated, and the effects of the probiotic intervention on wound healing, periodontitis and wound-specific quality of life (Wound-QOL-17) were analysed throughout the course of this clinical study. RESULTS: In total, seven of the 20 patients included were unable to complete the study. After six months of oral probiotic intake supplementation in five out of the remaining 13 patients, the wounds had healed completely. Most patients reported an improvement in wound-specific QoL, with particular positive effects on pain and mobility. Microbiome analysis revealed a reduction in Staphylococcus aureus and Pseudomonas aeruginosa, and Staphylococcus epidermis in healed wounds. CONCLUSION: This findings of this study provide evidence for the beneficial effects of the oral application of a multispecies probiotic over six months in patients with diabetes and hard-to-heal wounds on wound closure, wound microbial pattern, QoL, and on dental health. A randomised, placebo-controlled, double-blinded clinical trial is required to verify the results.


Subject(s)
Periodontitis , Probiotics , Quality of Life , Wound Healing , Humans , Probiotics/administration & dosage , Probiotics/therapeutic use , Male , Female , Middle Aged , Pilot Projects , Aged , Periodontitis/therapy , Adult , Microbiota/drug effects
5.
Brain Commun ; 6(3): fcae146, 2024.
Article in English | MEDLINE | ID: mdl-38863574

ABSTRACT

Idiopathic Parkinson's disease is determined by a combination of genetic and environmental factors. Recently, the first genome-wide association study on short-tandem repeats in Parkinson's disease reported on eight suggestive short-tandem repeat-based risk loci (α = 5.3 × 10-6), of which four were novel, i.e. they had not been implicated in Parkinson's disease risk by genome-wide association analyses of single-nucleotide polymorphisms before. Here, we tested these eight candidate short-tandem repeats in a large, independent Parkinson's disease case-control dataset (n = 4757). Furthermore, we combined the results from both studies by meta-analysis resulting in the largest Parkinson's disease genome-wide association study of short-tandem repeats to date (n = 43 844). Lastly, we investigated whether leading short-tandem repeat risk variants exert functional effects on gene expression regulation based on methylation quantitative trait locus data in human 'post-mortem' brain (n = 142). None of the eight previously reported short-tandem repeats were significantly associated with Parkinson's disease in our independent dataset after multiple testing correction (α = 6.25 × 10-3). However, we observed modest support for short-tandem repeats near CCAR2 and NCOR1 in the updated meta-analyses of all available data. While the genome-wide meta-analysis did not reveal additional study-wide significant (α = 6.3 × 10-7) short-tandem repeat signals, we identified seven novel suggestive Parkinson's disease short-tandem repeat risk loci (α = 5.3 × 10-6). Of these, especially a short-tandem repeat near MEIOSIN showed consistent evidence for association across datasets. CCAR2, NCOR1 and one novel suggestive locus identified here (LINC01012) emerged from colocalization analyses showing evidence for a shared causal short-tandem repeat variant affecting both Parkinson's disease risk and cis DNA methylation in brain. Larger studies, ideally using short-tandem repeats called from whole-sequencing data, are needed to more fully investigate their role in Parkinson's disease.

6.
Cell Rep Med ; 5(7): 101620, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38901430

ABSTRACT

Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4+ T (CD4+ TN) cells in people with PSC. Mechanistically, rs56258221 leads to an increased expression of miR4464, in turn causing attenuated translation of BACH2, a major gatekeeper of T cell quiescence. Thereby, the fate of CD4+ TN is skewed toward polarization into pro-inflammatory subsets. Clinically, people with PSC carrying rs56258221 show signs of accelerated disease progression. The data presented here highlight the importance of assigning functional outcomes to disease-associated genetic polymorphisms as potential drivers of diseases.


Subject(s)
Basic-Leucine Zipper Transcription Factors , CD4-Positive T-Lymphocytes , Cholangitis, Sclerosing , MicroRNAs , Polymorphism, Single Nucleotide , Humans , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/pathology , Cholangitis, Sclerosing/immunology , MicroRNAs/genetics , MicroRNAs/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Male , Polymorphism, Single Nucleotide/genetics , Female , Genetic Predisposition to Disease , Adult , Middle Aged
7.
J Clin Periodontol ; 51(8): 1081-1092, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38745393

ABSTRACT

AIM: The oral microenvironment contributes to microbial composition and immune equilibrium. It is considered to be influenced by dietary habits. Phenylketonuria (PKU) patients, who follow a lifelong low-protein diet, exhibit higher prevalence of oral diseases such as periodontitis, offering a suitable model to explore the interplay between diet, oral microbiota and oral health. MATERIALS AND METHODS: We conducted 16S rDNA sequencing on saliva and subgingival plaque from 109 PKU patients (ages 6-68 years) and 114 age-matched controls and correlated oral microbial composition and dental health. RESULTS: PKU patients exhibited worse dental health, reduced oral microbial diversity and a difference in the abundance of specific taxa, especially Actinobacteriota species, compared to controls. PKU patients with poor periodontal health exhibited higher alpha diversity than the orally healthy ones, marked by high abundance of the genus Tannerella. Notably, the observed taxonomic differences in PKU patients with normal indices of decayed/missing/filled teeth, plaque control record, gingival bleeding index and periodontal screening and recording index generally differed from microbial signatures of periodontitis. CONCLUSIONS: PKU patients' reduced microbial diversity may be due to their diet's metabolic challenges disrupting microbial and immune balance, thus increasing oral inflammation. Higher alpha diversity in PKU patients with oral inflammation is likely related to expanded microbial niches.


Subject(s)
Microbiota , Phenylketonurias , Humans , Phenylketonurias/microbiology , Adolescent , Cross-Sectional Studies , Child , Male , Female , Adult , Middle Aged , Young Adult , Aged , Saliva/microbiology , Dental Plaque/microbiology , Mouth/microbiology , Case-Control Studies , Oral Health , Periodontal Index , RNA, Ribosomal, 16S/analysis , Periodontitis/microbiology
9.
Clin Pharmacol Ther ; 116(1): 204-216, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38637968

ABSTRACT

Although great progress has been made in the fine-tuning of diplotypes, there is still a need to further improve the predictability of individual phenotypes of pharmacogenetically relevant enzymes. The aim of this study was to analyze the additional contribution of sex and variants identified by exome chip analysis to the metabolic ratio of five probe drugs. A cocktail study applying dextromethorphan, losartan, omeprazole, midazolam, and caffeine was conducted on 200 healthy volunteers. CYP2D6, 2C9, 2C19, 3A4/5, and 1A2 genotypes were analyzed and correlated with metabolic ratios. In addition, an exome chip analysis was performed. These SNPs correlating with metabolic ratios were confirmed by individual genotyping. The contribution of various factors to metabolic ratios was assessed by multiple regression analysis. Genotypically predicted phenotypes defined by CPIC discriminated very well the log metabolic ratios with the exception of caffeine. There were minor sex differences in the activity of CYP2C9, 2C19, 1A2, and CYP3A4/5. For dextromethorphan (CYP2D6), IP6K2 (rs61740999) and TCF20 (rs5758651) affected metabolic ratios, but only IP6K2 remained significant after multiple regression analysis. For losartan (CYP2C9), FBXW12 (rs17080138), ZNF703 (rs79707182), and SLC17A4 (rs11754288) together with CYP diplotypes, and sex explained 50% of interindividual variability. For omeprazole (CYP2C19), no significant influence of CYP2C:TG haplotypes was observed, but CYP2C19 rs12777823 improved the predictability. The comprehensive genetic analysis and inclusion of sex in a multiple regression model significantly improved the explanation of variability of metabolic ratios, resulting in further improvement of algorithms for the prediction of individual phenotypes of drug-metabolizing enzymes.


Subject(s)
Genotype , Phenotype , Polymorphism, Single Nucleotide , Humans , Male , Female , Adult , Exome/genetics , Caffeine/pharmacokinetics , Caffeine/metabolism , Dextromethorphan/pharmacokinetics , Dextromethorphan/metabolism , Losartan/pharmacokinetics , Pharmaceutical Preparations/metabolism , Young Adult , Omeprazole/pharmacokinetics , Sex Factors , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Genetic Association Studies/methods , Oligonucleotide Array Sequence Analysis
10.
Methods Mol Biol ; 2758: 425-443, 2024.
Article in English | MEDLINE | ID: mdl-38549028

ABSTRACT

Human leukocyte antigen (HLA) proteins are a group of glycoproteins that are expressed at the cell surface, where they present peptides to T cells through physical interactions with T-cell receptors (TCRs). Hence, characterizing the set of peptides presented by HLA proteins, referred to hereafter as the immunopeptidome, is fundamental for neoantigen identification, immunotherapy, and vaccine development. As a result, different methods have been used over the years to identify peptides presented by HLA proteins, including competition assays, peptide microarrays, and yeast display systems. Nonetheless, over the last decade, mass spectrometry-based immunopeptidomics (MS-immunopeptidomics) has emerged as the gold-standard method for identifying peptides presented by HLA proteins. MS-immunopeptidomics enables the direct identification of the immunopeptidome in different tissues and cell types in different physiological and pathological states, for example, solid tumors or virally infected cells. Despite its advantages, it is still an experimentally and computationally challenging technique with different aspects that need to be considered before planning an MS-immunopeptidomics experiment, while conducting the experiment and with analyzing and interpreting the results. Hence, we aim in this chapter to provide an overview of this method and discuss different practical considerations at different stages starting from sample collection until data analysis. These points should aid different groups aiming at utilizing MS-immunopeptidomics, as well as, identifying future research directions to improve the method.


Subject(s)
Histocompatibility Antigens Class I , Peptides , Humans , Peptides/chemistry , HLA Antigens , Histocompatibility Antigens Class II , Mass Spectrometry/methods
11.
Front Microbiol ; 15: 1347422, 2024.
Article in English | MEDLINE | ID: mdl-38476944

ABSTRACT

Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.

12.
EBioMedicine ; 102: 105056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471395

ABSTRACT

BACKGROUND: Chronic inflammatory diseases (CIDs) are systems disorders that affect diverse organs including the intestine, joints and skin. The essential amino acid tryptophan (Trp) can be broken down to various bioactive derivatives important for immune regulation. Increased Trp catabolism has been observed in some CIDs, so we aimed to characterise the specificity and extent of Trp degradation as a systems phenomenon across CIDs. METHODS: We used high performance liquid chromatography and targeted mass spectrometry to assess the serum and stool levels of Trp and Trp derivatives. Our retrospective study incorporates both cross-sectional and longitudinal components, as we have included a healthy population as a reference and there are also multiple observations per patient over time. FINDINGS: We found reduced serum Trp levels across the majority of CIDs, and a prevailing negative relationship between Trp and systemic inflammatory marker C-reactive protein (CRP). Notably, serum Trp was low in several CIDs even in the absence of measurable systemic inflammation. Increases in the kynurenine-to-Trp ratio (Kyn:Trp) suggest that these changes result from increased degradation along the kynurenine pathway. INTERPRETATION: Increases in Kyn:Trp indicate the kynurenine pathway as a major route for CID-related Trp metabolism disruption and the specificity of the network changes indicates excessive Trp degradation relative to other proteogenic amino acids. Our results suggest that increased Trp catabolism is a common metabolic occurrence in CIDs that may directly affect systemic immunity. FUNDING: This work was supported by the DFG Cluster of Excellence 2167 "Precision medicine in chronic inflammation" (KA, SSchr, PR, BH, SWa), the BMBF (e:Med Juniorverbund "Try-IBD" 01ZX1915A and 01ZX2215, the e:Med Network iTREAT 01ZX2202A, and GUIDE-IBD 031L0188A), EKFS (2020_EKCS.11, KA), DFG RU5042 (PR, KA), and Innovative Medicines Initiative 2 Joint Undertakings ("Taxonomy, Treatments, Targets and Remission", 831434, "ImmUniverse", 853995, "BIOMAP", 821511).


Subject(s)
Inflammatory Bowel Diseases , Tryptophan , Humans , Tryptophan/metabolism , Kynurenine , Retrospective Studies , Cross-Sectional Studies , Inflammation/metabolism , Chronic Disease
13.
Comp Med ; 74(2): 55-69, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38508697

ABSTRACT

Disturbances in gut microbiota are prevalent in inflammatory bowel disease (IBD), which includes ulcerative colitis (UC). However, whether these disturbances contribute to development of the disease or are a result of the disease is unclear. In pairs of human twins discordant for IBD, the healthy twin has a higher risk of developing IBD and a gut microbiota that is more similar to that of IBD patients as compared with healthy individuals. Furthermore, appropriate medical treatment may mitigate these disturbances. To study the correlation between microbiota and IBD, we transferred stool samples from a discordant human twin pair: one twin being healthy and the other receiving treatment for UC. The stool samples were transferred from the disease-discordant twins to germ-free pregnant dams. Colitis was induced in the offspring using dextran sodium sulfate. As compared with offspring born to mice dams inoculated with stool from the healthy cotwin, offspring born to dams inoculated with stool from the UC-afflicted twin had a lower disease activity index, less gut inflammation, and a microbiota characterized by higher α diversity and a more antiinflammatory profile that included the presence and higher abundance of antiinflammatory species such as Akkermansia spp., Bacteroides spp., and Parabacteroides spp. These findings suggest that the microbiota from the healthy twin may have had greater inflammatory properties than did that of the twin undergoing UC treatment.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Animals , Colitis, Ulcerative/microbiology , Humans , Mice , Female , Germ-Free Life , Dextran Sulfate/toxicity , Feces/microbiology , Pregnancy , Male , Disease Models, Animal , Fecal Microbiota Transplantation
15.
JHEP Rep ; 6(2): 100988, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304234

ABSTRACT

Background & Aims: Genetic and microbiome studies across patients with primary sclerosing cholangitis (PSC) and ulcerative colitis (UC) have indicated that UC in PSC is a separate disease entity to primary UC, but expression studies for PSC are lacking. Methods: We conducted whole blood RNA sequencing experiments for 495 patients with UC, 220 patients with PSC (including 177 with UC), and 320 healthy controls from Germany and Norway. Differential expression analyses, gene ontology and coexpression analyses and random forest machine learning were performed to identify genes, ontologies and transcriptional features that discriminate diagnoses. Results: The blood transcriptome in UC and PSC is dominated by neutrophil activation genes (e.g. S100A12). In UC, but not in PSC (neither PSC alone nor patients with an additional diagnosis of UC [PSC/UC]), ribosomal, mitochondrial, and energy metabolism genes are upregulated in conjunction with antibody transcript expression (MZB1, IGJ). In PSC, there is an increase in modules related to apoptosis and expression of genes of interferon-I-related ontologies. Random forest analysis could poorly discriminate PSC alone from PSC/UC (AUROC 0.56), but could discriminate PSC, UC, and controls with high accuracy (AUROC UC vs. controls 0.95, PSC vs. controls 0.88, UC vs. PSC 0.986). The main coexpression modules relevant for distinguishing PSC, UC, and controls are enriched in neutrophil degranulation and antibody production genes. Conclusions: Supported by machine learning results, PSC and UC appear to be separate entities on a molecular level, while PSC/UC and PSC are indistinguishable. Impact and implications: Clinical and genetic studies suggest that the colitis-like symptoms in primary sclerosing cholangitis (PSC) represent a different disease entity from primary ulcerative colitis (UC). The present study supports this assumption with transcriptomic data from whole blood and describes notable differences in gene expression between primary UC and PSC, providing insights into the still unclear pathophysiology of both diseases. These findings are of interest to scientists seeking to decipher the molecular pathophysiology of both diseases and provide evidence that a redefinition of the PSC-UC phenotype should be considered. The study practically supports future molecular research by providing a large transcriptomic whole blood reference cohort.

16.
Microbiol Spectr ; 12(2): e0114423, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38230938

ABSTRACT

While numerous health-beneficial interactions between host and microbiota have been identified, there is still a lack of targeted approaches for modulating these interactions. Thus, we here identify precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In the first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we use metabolic modeling to identify precision prebiotics for a two-member Caenorhabditis elegans microbiome community comprising the immune-protective target species Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. We experimentally confirm four of the predicted precision prebiotics, L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid, to specifically increase the abundance of MYb11. L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.IMPORTANCEWhile various mechanisms through which the microbiome influences disease processes in the host have been identified, there are still only few approaches that allow for targeted manipulation of microbiome composition as a first step toward microbiome-based therapies. Here, we propose the concept of precision prebiotics that allow to boost the abundance of already resident health-beneficial microbial species in a microbiome. We present a constraint-based modeling pipeline to predict precision prebiotics for a minimal microbial community in the worm Caenorhabditis elegans comprising the host-beneficial Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71 with the aim to boost the growth of MYb11. Experimentally testing four of the predicted precision prebiotics, we confirm that they are specifically able to increase the abundance of MYb11 in vitro and in vivo. These results demonstrate that constraint-based modeling could be an important tool for the development of targeted microbiome-based therapies against human diseases.


Subject(s)
Microbiota , Prebiotics , Pseudomonas , Animals , Humans , Caenorhabditis elegans , Serine
17.
PNAS Nexus ; 3(1): pgad427, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38205031

ABSTRACT

Microbial communities in the intestinal tract are suggested to impact the ethiopathogenesis of Alzheimer's disease (AD). The human microbiome might modulate neuroinflammatory processes and contribute to neurodegeneration in AD. However, the microbial compositions in patients with AD at different stages of the disease are still not fully characterized. We used 16S rRNA analyses to investigate the oral and fecal microbiota in patients with AD and mild cognitive impairment (MCI; n = 84), at-risk individuals (APOE4 carriers; n = 17), and healthy controls (n = 50) and investigated the relationship of microbial communities and disease-specific markers via multivariate- and network-based approaches. We found a slightly decreased diversity in the fecal microbiota of patients with AD (average Chao1 diversity for AD = 212 [SD = 66]; for controls = 215 [SD = 55]) and identified differences in bacterial abundances including Bacteroidetes, Ruminococcus, Sutterella, and Porphyromonadaceae. The diversity in the oral microbiota was increased in patients with AD and at-risk individuals (average Chao1 diversity for AD = 174 [SD = 60], for at-risk group = 195 [SD = 49]). Gram-negative proinflammatory bacteria including Haemophilus, Neisseria, Actinobacillus, and Porphyromonas were dominant oral bacteria in patients with AD and MCI and the abundance correlated with the cerebrospinal fluid biomarker. Taken together, we observed a strong shift in the fecal and the oral communities of patients with AD already prominent in prodromal and, in case of the oral microbiota, in at-risk stages. This indicates stage-dependent alterations in oral and fecal microbiota in AD which may contribute to the pathogenesis via a facilitated intestinal and systemic inflammation leading to neuroinflammation and neurodegeneration.

19.
J Crohns Colitis ; 18(3): 349-359, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37768647

ABSTRACT

BACKGROUND AND AIMS: Microscopic colitis [MC] is currently regarded as an inflammatory bowel disease that manifests as two subtypes: collagenous colitis [CC] and lymphocytic colitis [LC]. Whether these represent a clinical continuum or distinct entities is, however, an open question. Genetic investigations may contribute important insight into their respective pathophysiologies. METHODS: We conducted a genome-wide association study [GWAS] meta-analysis in 1498 CC, 373 LC patients, and 13 487 controls from Europe and the USA, combined with publicly available MC GWAS data from UK Biobank and FinnGen [2599 MC cases and 552 343 controls in total]. Human leukocyte antigen [HLA] alleles and polymorphic residues were imputed and tested for association, including conditional analyses for the identification of key causative variants and residues. Genetic correlations with other traits and diagnoses were also studied. RESULTS: We detected strong HLA association with CC, and conditional analyses highlighted the DRB1*03:01 allele and its residues Y26, N77, and R74 as key to this association (best p = 1.4 × 10-23, odds ratio [OR] = 1.96). Nominally significant genetic correlations were detected between CC and pneumonia [rg = 0.77; p = 0.048] and oesophageal diseases [rg = 0.45, p = 0.023]. An additional locus was identified in MC GWAS analyses near the CLEC16A and RMI2 genes on chromosome 16 [rs35099084, p = 2.0 × 10-8, OR = 1.31]. No significant association was detected for LC. CONCLUSION: Our results suggest CC and LC have distinct pathophysiological underpinnings, characterised by an HLA predisposing role only in CC. This challenges existing classifications, eventually calling for a re-evaluation of the utility of MC umbrella definitions.


Subject(s)
Colitis, Collagenous , Colitis, Lymphocytic , Colitis, Microscopic , Humans , Genome-Wide Association Study , HLA Antigens/genetics , Histocompatibility Antigens Class II , Colitis, Microscopic/genetics , Colitis, Lymphocytic/genetics
20.
Am J Clin Nutr ; 119(1): 136-144, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926191

ABSTRACT

BACKGROUND: Adherence to a Mediterranean-style dietary pattern is likely to have variable effects on body composition, but the impact of gut microbiome on this relationship is unknown. OBJECTIVES: To examine the potential mediating effect of the gut microbiome on the associations between Alternate Mediterranean Diet (aMed) scores, abdominal adiposity, and inflammation in population-level analysis. DESIGN: In a community-based sample aged 25 to 83 y (n = 620; 41% female) from Northern Germany, we assessed the role of the gut microbiome, sequenced from 16S rRNA genes, on the associations between aMed scores, estimated using validated food-frequency questionnaires, magnetic resonance imaging-determined visceral (VAT) and subcutaneous (SAT) adipose tissue and C-reactive protein (CRP). RESULTS: Higher aMed scores were associated with lower SAT (-0.86 L (95% CI: -1.56, -0.17), P = 0.01), VAT (-0.65 L (95% CI: -1.03,-0.27), P = 0.01) and CRP concentrations (-0.35 mg/L; ß: -20.1% (95% CI: 35.5, -1.09), P = 0.04) in the highest versus lowest tertile after multivariate adjustment. Of the taxa significantly associated with aMed scores, higher abundance of Porphyromonadaceae mediated 11.6%, 9.3%, and 8.7% of the associations with lower SAT, VAT, and CRP, respectively. Conversely, a lower abundance of Peptostreptococcaceae mediated 13.1% and 18.2% of the association with SAT and CRP levels. Of the individual components of the aMed score, moderate alcohol intake was associated with lower VAT (-0.2 (95% CI: -0.4, -0.1), P =0.01) with a higher abundance of Oxalobacteraceae and lower abundance of Burkholderiaceae explaining 8.3% and 9.6% of this association, respectively. CONCLUSION: These novel data suggest that abundance of specific taxa in the Porphyromonadaceae and Peptostreptococcaceae families may contribute to the association between aMed scores, lower abdominal adipose tissue, and inflammation.


Subject(s)
Diet, Mediterranean , Gastrointestinal Microbiome , Humans , Female , Male , C-Reactive Protein/metabolism , Adiposity , RNA, Ribosomal, 16S , Obesity, Abdominal/metabolism , Inflammation/metabolism , Intra-Abdominal Fat/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL