Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Hum Vaccin Immunother ; 20(1): 2356269, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38826029

ABSTRACT

The influenza viruses cause seasonal respiratory illness that affect millions of people globally every year. Prophylactic vaccines are the recommended method to prevent the breakout of influenza epidemics. One of the current commercial influenza vaccines consists of inactivated viruses that are selected months prior to the start of a new influenza season. In many seasons, the vaccine effectiveness (VE) of these vaccines can be relatively low. Therefore, there is an urgent need to develop an improved, more universal influenza vaccine (UIV) that can provide broad protection against various drifted strains in all age groups. To meet this need, the computationally optimized broadly reactive antigen (COBRA) methodology was developed to design a hemagglutinin (HA) molecule as a new influenza vaccine. In this study, COBRA HA-based inactivated influenza viruses (IIV) expressing the COBRA HA from H1 or H3 influenza viruses were developed and characterized for the elicitation of immediate and long-term protective immunity in both immunologically naïve or influenza pre-immune animal models. These results were compared to animals vaccinated with IIV vaccines expressing wild-type H1 or H3 HA proteins (WT-IIV). The COBRA-IIV elicited long-lasting broadly reactive antibodies that had hemagglutination-inhibition (HAI) activity against drifted influenza variants.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Orthomyxoviridae Infections , Vaccines, Inactivated , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Animals , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Female , Mice, Inbred BALB C , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Vaccine Efficacy , Hemagglutination Inhibition Tests
2.
Front Biosci ; 13: 609-20, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17981574

ABSTRACT

A major obstacle to the design of a global HIV-1 vaccine is viral diversity. At present, data suggest that a vaccine comprising a single antigen will fail to generate broadly reactive B-cell and T-cell responses able to confer protection against the diverse isolates of HIV-1. While some B-cell and T-cell epitopes lie within the more conserved regions of HIV-1 proteins, many are localized to variable regions and differ from one virus to the next. Neutralizing B-cell responses may vary toward viruses with different i) antibody contact residues and/or ii) protein conformations while T-cell responses may vary toward viruses with different (i) T-cell receptor contact residues and/or (ii) amino acid sequences pertinent to antigen processing. Here we review previous and current strategies for HIV-1 vaccine development. We focus on studies at St. Jude Children's Research Hospital (SJCRH) dedicated to the development of an HIV-1 vaccine cocktail strategy. The SJCRH multi-vectored, multi-envelope vaccine has now been shown to elicit HIV-1-specific B- and T-cell functions with a diversity and durability that may be required to prevent HIV-1 infections in humans.


Subject(s)
AIDS Vaccines/chemistry , Drug Design , HIV Infections/prevention & control , HIV-1/metabolism , Animals , Chemistry, Pharmaceutical/methods , HIV Antibodies/chemistry , Human Immunodeficiency Virus Proteins/chemistry , Humans , Immune System/virology , Neutralization Tests , Primates
3.
J Pediatr Pharmacol Ther ; 12(2): 68-76, 2007 Apr.
Article in English | MEDLINE | ID: mdl-23055844

ABSTRACT

The St. Jude Children's Research Hospital (St. Jude) HIV-1 vaccine program is based on the observation that multiple antigenically distinct HIV-1 envelope protein structures are capable of mediating HIV-1 infection. A cocktail vaccine comprising representatives of these diverse structures (immunotypes) is therefore considered necessary to elicit lymphocyte populations that prevent HIV-1 infection. This strategy is reminiscent of that used to design a currently licensed and successful 23-valent pneumococcus vaccine. Three recombinant vector systems are used for the delivery of envelope cocktails (DNA, vaccinia virus, and purified protein), and each of these has been tested individually in phase I safety trials. A fourth FDA-approved clinical trial, in which diverse envelopes and vectors are combined in a prime-boost vaccination regimen, has recently begun. This trial will continue to test the hypothesis that a multi-vector, multi-envelope vaccine can elicit diverse B- and T-cell populations that can prevent HIV-1 infections in humans.

SELECTION OF CITATIONS
SEARCH DETAIL