Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 40(1): 235-249, 2018 01.
Article in English | MEDLINE | ID: mdl-28166490

ABSTRACT

Objects and structures within man-made environments typically exhibit a high degree of organization in the form of orthogonal and parallel planes. Traditional approaches utilize these regularities via the restrictive, and rather local, Manhattan World (MW) assumption which posits that every plane is perpendicular to one of the axes of a single coordinate system. The aforementioned regularities are especially evident in the surface normal distribution of a scene where they manifest as orthogonally-coupled clusters. This motivates the introduction of the Manhattan-Frame (MF) model which captures the notion of an MW in the surface normals space, the unit sphere, and two probabilistic MF models over this space. First, for a single MF we propose novel real-time MAP inference algorithms, evaluate their performance and their use in drift-free rotation estimation. Second, to capture the complexity of real-world scenes at a global scale, we extend the MF model to a probabilistic mixture of Manhattan Frames (MMF). For MMF inference we propose a simple MAP inference algorithm and an adaptive Markov-Chain Monte-Carlo sampling algorithm with Metropolis-Hastings split/merge moves that let us infer the unknown number of mixture components. We demonstrate the versatility of the MMF model and inference algorithm across several scales of man-made environments.

2.
IEEE Trans Pattern Anal Mach Intell ; 39(12): 2496-2509, 2017 12.
Article in English | MEDLINE | ID: mdl-28092517

ABSTRACT

We propose novel finite-dimensional spaces of well-behaved transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.

3.
J Neural Eng ; 11(4): 046020, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24995476

ABSTRACT

OBJECTIVE: Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. APPROACH: We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. MAIN RESULTS: Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. SIGNIFICANCE: Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.


Subject(s)
Brain-Computer Interfaces , Movement/physiology , Animals , Behavior, Animal/physiology , Biomechanical Phenomena , Electrodes, Implanted , Electrophysiological Phenomena/physiology , Macaca mulatta , Microelectrodes , Models, Neurological , Motor Cortex/physiology , Rotation , Visual Prosthesis , Walking/physiology
4.
Article in English | MEDLINE | ID: mdl-23366491

ABSTRACT

Two research communities, motor systems neuroscience and motor prosthetics, examine the relationship between neural activity in the motor cortex and movement. The former community aims to understand how the brain controls and generates movement; the latter community focuses on how to decode neural activity as control signals for a prosthetic cursor or limb. Both have made progress toward understanding the relationship between neural activity in the motor cortex and behavior. However, these findings are tested using animal models in an environment that constrains behavior to simple, limited movements. These experiments show that, in constrained settings, simple reaching motions can be decoded from small populations of spiking neurons. It is unclear whether these findings hold for more complex, full-body behaviors in unconstrained settings. Here we present the results of freely-moving behavioral experiments from a monkey with simultaneous intracortical recording. We investigated neural firing rates while the monkey performed various tasks such as walking on a treadmill, reaching for food, and sitting idly. We show that even in such an unconstrained and varied context, neural firing rates are well tuned to behavior, supporting findings of basic neuroscience. Further, we demonstrate that the various behavioral tasks can be reliably classified with over 95% accuracy, illustrating the viability of decoding techniques despite significant variation and environmental distractions associated with unconstrained behavior. Such encouraging results hint at potential utility of the freely-moving experimental paradigm.


Subject(s)
Movement/physiology , Neurons/physiology , Animals , Behavior, Animal/physiology , Macaca mulatta , Male
5.
Int IEEE EMBS Conf Neural Eng ; 2011: 613-616, 2011.
Article in English | MEDLINE | ID: mdl-26019730

ABSTRACT

Neural control of movement is typically studied in constrained environments where there is a reduced set of possible behaviors. This constraint may unintentionally limit the applicability of findings to the generalized case of unconstrained behavior. We hypothesize that examining the unconstrained state across multiple behavioral contexts will lead to new insights into the neural control of movement and help advance the design of neural prosthetic decode algorithms. However, to pursue electrophysiological studies in such a manner requires a more flexible framework for experimentation. We propose that head-mounted neural recording systems with wireless data transmission, combined with markerless computer-vision based motion tracking, will enable new, less constrained experiments. As a proof-of-concept, we recorded and wirelessly transmitted broadband neural data from 32 electrodes in premotor cortex while acquiring single-camera video of a rhesus macaque walking on a treadmill. We demonstrate the ability to extract behavioral kinematics using an automated computer vision algorithm without use of markers and to predict kinematics from the neural data. Together these advances suggest that a new class of "freely moving monkey" experiments should be possible and should help broaden our understanding of the neural control of movement.

6.
Int J Biomed Imaging ; 2009: 715124, 2009.
Article in English | MEDLINE | ID: mdl-19756161

ABSTRACT

This paper focuses on the detection and segmentation of Multiple Sclerosis (MS) lesions in magnetic resonance (MRI) brain images. To capture the complex tissue spatial layout, a probabilistic model termed Constrained Gaussian Mixture Model (CGMM) is proposed based on a mixture of multiple spatially oriented Gaussians per tissue. The intensity of a tissue is considered a global parameter and is constrained, by a parameter-tying scheme, to be the same value for the entire set of Gaussians that are related to the same tissue. MS lesions are identified as outlier Gaussian components and are grouped to form a new class in addition to the healthy tissue classes. A probability-based curve evolution technique is used to refine the delineation of lesion boundaries. The proposed CGMM-CE algorithm is used to segment 3D MRI brain images with an arbitrary number of channels. The CGMM-CE algorithm is automated and does not require an atlas for initialization or parameter learning. Experimental results on both standard brain MRI simulation data and real data indicate that the proposed method outperforms previously suggested approaches, especially for highly noisy data.

SELECTION OF CITATIONS
SEARCH DETAIL