Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters








Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(11): 11E555, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910507

ABSTRACT

The edge tangential Thomson scattering system (ETTSS) was developed for the first time on a HL-2A tokamak. A Nd:YAG laser with a 1064 nm wavelength, 4 J energy, and 30 Hz repetition rate is employed on the ETTSS. The laser beam injects the plasma in the tangential direction on the mid-plane of the machine, and the angles between the laser injection direction and the scattered light collection direction are in the range from 157.5° to 162.8°. The scattered light collection optics with 0.21-0.47 magnification is utilized to collect the scattered light of measurement range from R = 1900 mm to 2100 mm (the normalized radius is from r/a = 0.625 to 1.125). Spatial resolution of the preliminary design could be up to Δr/a = 0.016. The measurement requirements could be achieved: 10 eV < Te < 1.5 keV, and 0.5 × 1019 m-3 < ne < 3 × 1019 m-3 with errors less than 15% and 10%, respectively.

2.
Rev Sci Instrum ; 87(11): 11E319, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910627

ABSTRACT

In this article, a Bayesian tomography method using non-stationary Gaussian process for a prior has been introduced. The Bayesian formalism allows quantities which bear uncertainty to be expressed in the probabilistic form so that the uncertainty of a final solution can be fully resolved from the confidence interval of a posterior probability. Moreover, a consistency check of that solution can be performed by checking whether the misfits between predicted and measured data are reasonably within an assumed data error. In particular, the accuracy of reconstructions is significantly improved by using the non-stationary Gaussian process that can adapt to the varying smoothness of emission distribution. The implementation of this method to a soft X-ray diagnostics on HL-2A has been used to explore relevant physics in equilibrium and MHD instability modes. This project is carried out within a large size inference framework, aiming at an integrated analysis of heterogeneous diagnostics.

3.
Rev Sci Instrum ; 87(6): 063503, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27370450

ABSTRACT

A new radial neutron camera system has been developed and operated recently in the HL-2A tokamak to measure the spatial and time resolved 2.5 MeV D-D fusion neutron, enhancing the understanding of the energetic-ion physics. The camera mainly consists of a multichannel collimator, liquid-scintillation detectors, shielding systems, and a data acquisition system. Measurements of the D-D fusion neutrons using the camera have been successfully performed during the 2015 HL-2A experiment campaign. The measurements show that the distribution of the fusion neutrons in the HL-2A plasma has a peaked profile, suggesting that the neutral beam injection beam ions in the plasma have a peaked distribution. It also suggests that the neutrons are primarily produced from beam-target reactions in the plasma core region. The measurement results from the neutron camera are well consistent with the results of both a standard (235)U fission chamber and NUBEAM neutron calculations. In this paper, the new radial neutron camera system on HL-2A and the first experimental results are described.

4.
Rev Sci Instrum ; 86(7): 076107, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233421

ABSTRACT

The electron cyclotron emission imaging system on the HL-2A tokamak has been upgraded to 24 (poloidally) × 16 (radially) channels based on the previous 24 × 8 array. The measurement region can be flexibly shifted due to the independence of the two local oscillator sources, and the field of view can be adjusted easily by changing the position of the zoom lenses. The temporal resolution is about 2.5 µs and the achievable spatial resolution is 1 cm. After laboratory calibration, it was installed on HL-2A tokamak in 2014, and the local 2D mode structures of MHD activities were obtained for the first time.

5.
Plant Dis ; 98(5): 691, 2014 May.
Article in English | MEDLINE | ID: mdl-30708541

ABSTRACT

The Chinese dwarf banana (Ensete lasiocarpum) is one of the ornamental bananas that belongs to Musaceae family. The plant is native to the southwestern China, where it grows semi-wild in the mountains between 1,500 and 2,500 m above sea level. During July 2011, a leaf spot disease on this plant was observed in the campus and parks in Kunming, Yunnan Province. The incidence level was about 22%, mainly on the old leaves. The leaf symptoms were irregular spots with gray to off-white centers surrounded by dark brown margins, and usually also surrounded by chlorotic halos. Leaf tissues (3 × 5 mm), cut from the margins of lesions, were surface-disinfected (95% ethanol for 3 min, 0.1% HgCl2 for 2 min, rinsed three times with sterile water), plated on potato sucrose agar (PSA), and incubated at 26°C under natural lights. The same fungus was consistently isolated from the diseased leaves. Colonies of white-to-dark gray mycelia formed on PSA that were black on the underside. The colonies were further identified as Alternaria sp. based on the dark brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (2). Conidia were 5.26 to 30.26 µm long and 3.95 to 15.79 µm wide, averaging 10.21 (±3.17) × 20.02 (±5.75) µm (n = 50), with a beak length of 0 to 7.89 µm, and had 3 to 8 transverse and 0 to 3 longitudinal septa. PCR amplification was carried out by utilizing universal rDNA-ITS primer pair ITS4/ITS5 (1). The ITS region of isolate DY1 (GenBank Accession No. KF516556) was 572 bp in length. BLAST search revealed 99% identity with two Alternaria alternata isolates (JF440581.1 and GQ121322.2). Phylogenetic analysis (MEGA 5.1) using the neighbor-joining algorithm placed the isolate in a well-supported cluster with other A. alternata isolates. The pathogen was identified as A. alternate (Fr.:Fr.) Keissler based on the morphological characteristics and rDNA-ITS sequence analysis. To confirm pathogenicity, Koch's postulates were performed on detached leaves of E. lasiocarpum inoculated with mycelial plugs with ddH2O and agar plugs as a control. Leaf spots identical to those observed in the field developed in 9 days on the inoculated leaves but not on the control. The inoculation assay used three leaves, totaling 72 spots for control and 36 spots for inoculation. The experiments were repeated once. A. alternata was consistently re-isolated from the inoculated leaves. The symptom developed easier with wounds. To our knowledge, this is the first report of E. lasiocarpum leaf spot disease caused by A. alternata in China and the world. References: (1) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (2) T. Y. Zhang. Flora Fungorum Sinicorum, Vol. 16: Alternaria. Science Press, Beijing, China, 2003.

6.
Rev Sci Instrum ; 84(11): 113501, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24289395

ABSTRACT

A 2D electron cyclotron emission imaging (ECEI) system has been developed for measurement of electron temperature fluctuations in the HL-2A tokamak. It is comprised of a front-end 24 channel heterodyne imaging array with a tunable RF range spanning 75-110 GHz, and a set of back-end ECEI electronics that together generate 24 × 8 = 192 channel images of the 2nd harmonic X-mode electron cyclotron emission from the HL-2A plasma. The simulated performance of the local oscillator (LO) optics and radio frequency (RF) optics is presented, together with the laboratory characterization results. The Gaussian beams from the LO optics are observed to properly cover the entire detector array. The ECE signals from the plasma are mixed with the LO signal in the array box, then delivered to the electronics system by low-loss microwave cables, and finally to the digitizers. The ECEI system can achieve temporal resolutions of ~µs, and spatial resolutions of 1 cm (radially) and 2 cm (poloidally).

7.
Plant Dis ; 97(1): 138, 2013 Jan.
Article in English | MEDLINE | ID: mdl-30722302

ABSTRACT

Chinese bean tree, Catalpa fargesii f. duciouxii (Dode) Gilmour, is an ornamental arbor plant. Its roots, leaves, and flowers have long been used for medicinal purposes in China. During July 2010, severe outbreaks of leaf spot disease on this plant occurred in Kunming, Yunnan Province. The disease incidence was greater than 90%. The symptoms on leaves began as dark brown lesions surrounded by chlorotic halos, and later became larger, round or irregular spots with gray to off-white centers surrounded by dark brown margins. Leaf tissues (3 × 3 mm), cut from the margins of lesions, were surface disinfected in 0.1% HgCl2 solution for 3 min, rinsed three times in sterile water, plated on potato dextrose agar (PDA), and incubated at 28°C. The same fungus was consistently isolated from the diseased leaves. Colonies of white-to-dark gray mycelia formed on PDA, and were slightly brown on the underside of the colony. The hyphae were achromatic, branching, septate, and 4.59 (±1.38) µm in diameter on average. Perithecia were brown to black, globose in shape, and 275.9 to 379.3 × 245.3 to 344.8 µm. Asci that formed after 3 to 4 weeks in culture were eight-spored, clavate to cylindrical. The ascospores were fusiform, slightly curved, unicellular and hyaline, and 13.05 to 24.03 × 10.68 to 16.02 µm. PCR amplification was carried out by utilizing universal rDNA-ITS primer pair ITS4/ITS5 (2). Sequencing of the PCR products of DQ1 (GenBank Accession No. JN165746) revealed 99% similarity (100% coverage) with Colletotrichum gloeosporioides isolates (GenBank Accession No. FJ456938.1, No. EU326190.1, No. DQ682572.1, and No. AY423474.1). Phylogenetic analyses (MEGA 4.1) using the neighbor-joining (NJ) algorithm placed the isolate in a well-supported cluster (>90% bootstrap value based on 1,000 replicates) with other C. gloeosporioides isolates. The pathogen was identified as C. gloeosporioides (Penz.) Penz. & Sacc. (teleomorph Glomerella cingulata (Stoneman) Spauld & H. Schrenk) based on the morphological characteristics and rDNA-ITS sequence analysis (1). To confirm pathogenicity, Koch's postulates were performed on detached leaves of C. fargesii f. duciouxii, inoculated with a solution of 1.0 × 106 conidia per ml. Symptoms similar to the original ones started to appear after 10 days, while untreated leaves remained healthy. The inoculation assay used three leaves for untreated and six leaves for treated. The experiments were repeated once. C. gloeosporioides was consistently reisolated from the diseased tissue. C. gloeosporioides is distributed worldwide causing anthracnose on a wide variety of plants (3). To the best of our knowledge, this is the first report of C. gloeosporioides causing leaf spots on C. fargesii f. duciouxii in China. References: (1) B. C. Sutton. Page 1 in: Colletotrichum: Biology, Pathology and Control. CAB International. Wallingford, UK, 1992. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (3) J. Yan et al. Plant Dis. 95:880, 2011.

SELECTION OF CITATIONS
SEARCH DETAIL