Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.040
Filter
1.
Plant J ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226401

ABSTRACT

Photoperiod and temperature-sensitive male sterility rice is an important line for two-line hybrid rice, and the changes in the cultivation temperature strictly control its pollen fertility. However, the mechanism by which temperature variation regulates pollen fertility is still unclear. This study obtained stable fertile PA64S(F) and sterile PA64S(S) rice from PA64S by controlling temperature changes. PA64S(F) shows a normal anther development and fertile pollen under low temperature (21°C), and PA64S(S) shows delayed degradation of the tapetum cells, leading to abnormal pollen wall formation and ubisch development under normal temperature (28°C). The accumulation of reactive oxygen species (ROS) positively correlates with the programmed cell death (PCD) process of tapetum cells. The delayed accumulation of ROS in the PA64S(S) tapetum at early stages leads to a delayed initiation of the PCD process. Importantly, we localized ascorbic acid (ASA) accumulation in the tapetum cells and determined that ASA is a major antioxidant for ROS homeostasis. ROS-inhibited accumulation plants (PA64S-ASA) demonstrated pollen sterility, higher ASA and lower ROS accumulation in the tapetum, and the absence of PCD processes in the tapetum cell. Abnormal changes in the tapetum of PA64S(S) rice disrupted metabolic pathways such as lipid metabolism, cutin and wax synthesis, sugar accumulation, and phenylpropane, affecting pollen wall formation and substance accumulation, suggesting that the timely accumulation of ROS is critical for male fertility. This study highlights the central role of ROS homeostasis in fertility alteration and also provides an avenue to address the effect of environmental temperature changes on pollen fertility in rice.

2.
Materials (Basel) ; 17(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274628

ABSTRACT

Polycrystalline silicon carbide (SiC) is a highly valuable material with crucial applications across various industries. Despite its benefits, processing this brittle material efficiently and with high quality presents significant challenges. A thorough understanding of the mechanisms involved in processing and removing SiC is essential for optimizing its production. In this study, we investigated the sawing characteristics and material removal mechanisms of polycrystalline silicon carbide (SiC) ceramic using a diamond wire saw. Experiments were conducted with high wire speeds of 30 m/s and a maximum feed rate of 2.0 mm/min. The coarseness value (Ra) increased slightly with the feed rate. Changes in the diamond wire during the grinding process and their effects on the grinding surface were analyzed using scanning electron microscopy (SEM), laser confocal microscopy, and focused ion beam (FIB)-transmission electron microscopy (TEM). The findings provide insights into the grinding mechanisms. The presence of ductile grinding zones and brittle fracture areas on the ground surface reveals that external forces induce dislocation and amorphization within the grain structure, which are key factors in material removal during grinding.

3.
EBioMedicine ; 108: 105321, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265506

ABSTRACT

BACKGROUND: Early detection of nasopharyngeal carcinoma (NPC) poses a significant challenge. The absence of highly sensitive and specific diagnostic biomarkers for nasopharyngeal carcinoma contributes to the unfavourable prognosis of NPC patients. Here, we aimed to establish a non-invasive approach for detecting NPC using circulating cell-free DNA (cfDNA). METHODS: We investigated the potential of next-generation sequencing (NGS) of peripheral blood cells as a diagnostic tool for NPC. We collected data on genome-wide nucleosome footprint (NF), 5'-end motifs, fragmentation patterns, CNV information, and EBV content from 553 Chinese subjects, including 234 NPC patients and 319 healthy individuals. Through case-control analysis, we developed a diagnostic model for NPC, and validated its detection capability. FINDINGS: Our findings revealed that the frequencies of NF, fragmentation, and motifs were significantly higher in NPC patients compared to healthy controls. We developed an NPC score based on these parameters that accurately distinguished NPC from non-NPC cases according to the American Joint Committee on Cancer staging system from non-NPC (validation set: area under curve (AUC) = 99.9% (95% CI: 99.8%-100%), se: 98.15%, sp: 100%). This model showed superior performance over plasma EBV DNA. Additionally, the NPC score effectively differentiated between NPC patients and healthy controls, even after clinical treatment. Furthermore, the NPC score was found to be independent of potential confounders such as age, sex, or TNM stage. INTERPRETATION: We have developed and verified a non-invasive approach with substantial potential for clinical application in detecting NPC. FUNDING: A full list of funding bodies that contributed to this study can be found in Funding section.

4.
Cell Signal ; 124: 111399, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251054

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a prevalent ailment characterized by the gradual degradation of joints, resulting in discomfort and restricted movement. The recently proposed mechanism of ferroptosis is intricately associated with the initiation and progression of OA. Our study found that the long non-coding RNA HOXA11-AS reduces ferroptosis by increasing the expression of SLC3A2 through the transcription factor POU2F2. MATERIALS AND METHODS: HOXA11-AS was identified through lncRNA microarray analysis, and its impact on chondrocytes and extracellular matrix was assessed using real-time quantitative PCR, western blotting, and CCK8 assays. Subsequently, overexpression of HOXA11-AS in the knee joints of mice confirmed its protective efficacy on chondrocyte phenotype in the OA model. The involvement of HOXA11-AS in regulating ferroptosis via SLC3A2 was further validated through RNA sequencing analysis of mouse cartilage and the assessment of malondialdehyde levels and glutathione peroxidase activity. Finally, a combination of RNA sequencing, pull-down assays, mass spectrometry (MS), and chromatin immunoprecipitation (ChIP) techniques was employed to identify POU2F2 as the crucial transcription factor responsible for repressing the expression of SLC3A2, which can be effectively inhibited by HOXA11-AS. RESULTS: Our study demonstrated that HOXA11-AS effectively enhanced the metabolic homeostasis of chondrocytes, and alleviated the progression of OA in vitro and in vivo experiments. Furthermore, HOXA11-AS was found to enhance SLC3A2 expression, a key regulator of ferroptosis, by interacting with the transcriptional repressor POU2F2. CONCLUSIONS: HOXA11-AS promotes SLC3A2 expression and inhibits chondrocyte ferroptosis, by binding to the transcriptional repressor POU2F2, offering a promising and innovative therapeutic approach for OA.

5.
Clin Immunol ; 268: 110355, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39237078

ABSTRACT

Biliary atresia (BA) is a severe pediatric liver disease characterized by progressive bile duct destruction and fibrosis, leading to significant liver damage and frequently necessitating liver transplantation. This study elucidates the role of LOX-1+ polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in BA pathogenesis and assesses their potential as non-invasive early diagnostic biomarkers. Using flow cytometry, immunofluorescence, and molecular profiling, we analyzed the expression and activity of these cells in peripheral blood and liver tissues from BA patients and controls. Our findings reveal a significant increase in the frequencies and function of LOX-1+PMN-MDSCs in BA patients, along with MAPK signaling pathway upregulation, indicating their involvement in disease mechanisms. Additionally, the frequencies of LOX-1+PMN-MDSC in peripheral blood significantly positively correlate with liver function parameters in BA patients, demonstrating diagnostic performance comparable to traditional serum markers. These findings suggest that LOX-1+PMN-MDSCs contribute to the immunosuppressive environment in BA and could serve as potential diagnostic targets.

6.
Plants (Basel) ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39124208

ABSTRACT

Rice B03S mutants with intermittent leaf discoloration were developed from the photoperiod- and thermosensitive genic male sterile (PTGMS) rice line Efeng 1S. After these plants were deeply transplanted, the new leaves manifested typical stripe patterns. In this study, deep and shallow transplantation of B03S was carried out, and aluminum shading was performed directly on the leaf sheath. It was determined that the reason for the appearance of the striped leaf trait was that the base of leaf sheath lacked light, at which time the sheath transformed from the source organ to the sink organ in rice. To elucidate the related metabolic changes in glycometabolism and abscisic acid (ABA) biosynthesis and transcriptional regulation in the leaf sheath, ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) combined with transcriptome and real-time quantitative PCR (qPCR) validation were used for analysis after deep and shallow transplantation. The result indicates that the leaf sheath may need to compete with the new leaves for sucrose produced by the photosynthesis of old leaves in response to lacking light at the base of sheath. Moreover, the ABA content increases in the leaf sheath when the gene expression of ABA2 and AAO1 is upregulated at the same time, enhancing the plant's resistance to the adverse condition of shading at the leaf sheath. Furthermore, exogenous spraying of B03S with ABA solution was carried out to help recovery under shading stress. The result indicates that the synthesis of endogenous ABA in the leaf sheath is reduced by spraying ABA. At the same time, ABA regulates sucrose metabolism by inhibiting the expression of the SUS gene. This allows for more sucrose synthesized by the old leaves to be transported to the new leaves, resulting an obvious recovery effect of the strip leaf character due to the re-balance of sugar supply and demand in B03S. These findings improve the understanding of the physiological function and metabolic mechanism of the rice leaf sheath, provide a theoretical basis for uneven leaf coloration in nature, and provide theoretical guidance for rice production via seedling transplantation or direct seeding.

7.
Anesthesiology ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186677

ABSTRACT

BACKGROUND: Acute liver injury (ALI) is a disease characterized by severe liver dysfunction, caused by significant infiltration of immune cells and extensive cell death with a high mortality. Previous studies demonstrated that the α7 nicotinic acetylcholine receptor (α7nAChR) played a crucial role in various liver diseases. The hypothesis of this study was that activating α7nAChR could alleviate ALI and investigate its possible mechanisms. METHODS: ALI was induced by intraperitoneal injection of lipopolysaccharide (LPS)/D-galactosamine (D-Gal) in wild type (WT), α7nAChR knockout (α7nAChR -/-) and Sting mutation (Stinggt/gt) mice in the presence or absence of a pharmacological selective α7nAChR agonist (PNU-282987). The effects of α7nAChR on hepatic injury, inflammatory response, mitochondrial damage, necroptosis and infiltration of immune cells during ALI were assessed. RESULTS: The expression of α7nAChR in liver tissue was increased in LPS/D-Gal induced ALI mice. Compared to the age-matched WT mice, α7nAChR deficiency decreased the survival rate, exacerbated the hepatic injury accompanied with enhanced inflammatory response and oxidative stress, and aggravated hepatic mitochondrial damage and necroptosis. Conversely, pharmacological activation of α7nAChR by PNU-282987 displayed the opposite trends. Furthermore, PNU-282987 significantly reduced the proportion of infiltrating monocyte-derived macrophages (CD45+CD11bhiF4/80int), M1 macrophages (CD45+CD11b+F4/80+CD86 hiCD163low), Ly6Chi monocytes (CD45+CD11b+MHCⅡ lowLy6C hi), but increased the resident Kupffer cells (CD45+CD11bintF4/80 hiTIM4 hi) in the damaged hepatic tissues caused by LPS/D-Gal. Interestingly, α7nAChR deficiency promoted the STING signaling pathway under LPS/D-Gal stimulation, while PNU-282987 treatment significantly prevented its activation. Finally, it was found that Sting mutation abolished the protective effects against hepatic injury by activating α7nAChR. CONCLUSIONS: Our study revealed that activating α7nAChR could protect against LPS/D-Gal induced ALI by inhibiting hepatic inflammation and necroptosis possibly via regulating immune cells infiltration and inhibiting STING signaling pathway.

8.
J Org Chem ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39197017

ABSTRACT

An amidoarylcarbonylation reaction of aromatic aldehydes and olefins with Katritzky pyridinium salts by N-heterocyclic carbene (NHC)-catalyzed radical relay to construct C-C and C-N bonds with good functional group tolerance is developed for the synthesis of ß-acylamino ketones. This gentle and efficient approach offers a valuable style for the synthesis of ß-acylamino ketones. Mechanistic studies revealed that a radical addition/coupling/elimination cascade process was involved in this reaction.

9.
Proc Natl Acad Sci U S A ; 121(34): e2400657121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39141344

ABSTRACT

Microsporidia are intracellular eukaryotic pathogens that pose a substantial threat to immunocompromised hosts. The way these pathogens manipulate host cells during infection remains poorly understood. Using a proximity biotinylation strategy we established that microsporidian EnP1 is a nucleus-targeted effector that modifies the host cell environment. EnP1's translocation to the host nucleus is meditated by nuclear localization signals (NLSs). In the nucleus, EnP1 interacts with host histone H2B. This interaction disrupts H2B monoubiquitination (H2Bub), subsequently impacting p53 expression. Crucially, this inhibition of p53 weakens its control over the downstream target gene SLC7A11, enhancing the host cell's resilience against ferroptosis during microsporidian infection. This favorable condition promotes the proliferation of microsporidia within the host cell. These findings shed light on the molecular mechanisms by which microsporidia modify their host cells to facilitate their survival.


Subject(s)
Ferroptosis , Histones , Microsporidia , Ubiquitination , Microsporidia/metabolism , Microsporidia/genetics , Histones/metabolism , Humans , Fungal Proteins/metabolism , Fungal Proteins/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Host-Pathogen Interactions , Animals , Cell Nucleus/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Microsporidiosis/metabolism
10.
Nat Commun ; 15(1): 6640, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103324

ABSTRACT

Immune checkpoint inhibitor (ICI)-induced myocarditis involves intensive immune/inflammation activation; however, its molecular basis is unclear. Here, we show that gasdermin-E (GSDME), a gasdermin family member, drives ICI-induced myocarditis. Pyroptosis mediated by GSDME, but not the canonical GSDMD, is activated in myocardial tissue of mice and cancer patients with ICI-induced myocarditis. Deficiency of GSDME in male mice alleviates ICI-induced cardiac infiltration of T cells, macrophages, and monocytes, as well as mitochondrial damage and inflammation. Restoration of GSDME expression specifically in cardiomyocytes, rather than myeloid cells, in GSDME-deficient mice reproduces ICI-induced myocarditis. Mechanistically, quantitative proteomics reveal that GSDME-dependent pyroptosis promotes cell death and mitochondrial DNA release, which in turn activates cGAS-STING signaling, triggering a robust interferon response and myocardial immune/inflammation activation. Pharmacological blockade of GSDME attenuates ICI-induced myocarditis and improves long-term survival in mice. Our findings may advance the understanding of ICI-induced myocarditis and suggest that targeting the GSDME-cGAS-STING-interferon axis may help prevent and manage ICI-associated myocarditis.


Subject(s)
Immune Checkpoint Inhibitors , Membrane Proteins , Myocarditis , Nucleotidyltransferases , Pyroptosis , Animals , Myocarditis/immunology , Myocarditis/pathology , Myocarditis/chemically induced , Myocarditis/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/adverse effects , Mice , Male , Humans , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction , Mice, Inbred C57BL , Mice, Knockout , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Female , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Gasdermins
11.
Curr Med Sci ; 44(4): 833-840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967889

ABSTRACT

OBJECTIVE: Colorectal cancer (CRC), a prevalent malignancy worldwide, has prompted extensive research into anticancer drugs. Traditional Chinese medicinal materials offer promising avenues for cancer management due to their diverse pharmacological activities. This study investigated the effects of Notopterygium incisum, a traditional Chinese medicine named Qianghuo (QH), on CRC cells and the underlying mechanism. METHODS: The sulforhodamine B assay and colony formation assay were employed to assess the effect of QH extract on the proliferation of CRC cell lines HCT116 and Caco-2. Propidium iodide (PI) staining was utilized to detect cell cycle progression, and PE Annexin V staining to detect apoptosis. Western blotting was conducted to examine the levels of apoptotic proteins, including B-cell lymphoma 2-interacting mediator of cell death (BIM), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (BAX) and cleaved caspase-3, as well as BIM stability after treatment with the protein synthesis inhibitor cycloheximide. The expression of BAX was suppressed using lentivirus-mediated shRNA to validate the involvement of the BIM/BAX axis in QH-induced apoptosis. The in vivo effects of QH extract on tumor growth were observed using a xenograft model. Lastly, APCMin+ mice were used to study the effects of QH extract on primary intestinal tumors. RESULTS: QH extract exhibited significant in vitro anti-CRC activities evidenced by the inhibition of cell proliferation, perturbation of cell cycle progression, and induction of apoptosis. Mechanistically, QH extract significantly increased the stability of BIM proteins, which undergo rapid degradation under unstressed conditions. Knockdown of BAX, the downstream effector of BIM, significantly rescued QH-induced apoptosis. Furthermore, the in vitro effect of QH extract was recapitulated in vivo. QH extract significantly inhibited the tumor growth of HCT116 xenografts in nude mice and decreased the number of intestinal polyps in the APCMin+ mice. CONCLUSION: QH extract promotes the apoptosis of CRC cells by preventing the degradation of BIM.


Subject(s)
Apiaceae , Apoptosis , Bcl-2-Like Protein 11 , Cell Proliferation , Colorectal Neoplasms , Humans , Bcl-2-Like Protein 11/metabolism , Bcl-2-Like Protein 11/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Animals , Apoptosis/drug effects , Mice , Cell Proliferation/drug effects , HCT116 Cells , Apiaceae/chemistry , Xenograft Model Antitumor Assays , Caco-2 Cells , Plant Extracts/pharmacology , Proteolysis/drug effects , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Drugs, Chinese Herbal/pharmacology , Mice, Nude
12.
Cell Death Differ ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009654

ABSTRACT

Dysregulated metabolism, cell death, and inflammation contribute to the development of metabolic dysfunction-associated steatohepatitis (MASH). Pyroptosis, a recently identified form of programmed cell death, is closely linked to inflammation. However, the precise role of pyroptosis, particularly gasdermin-E (GSDME), in MASH development remains unknown. In this study, we observed GSDME cleavage and GSDME-associated interleukin-1ß (IL-1ß)/IL-18 induction in liver tissues of MASH patients and MASH mouse models induced by a choline-deficient high-fat diet (CDHFD) or a high-fat/high-cholesterol diet (HFHC). Compared with wild-type mice, global GSDME knockout mice exhibited reduced liver steatosis, steatohepatitis, fibrosis, endoplasmic reticulum stress, lipotoxicity and mitochondrial dysfunction in CDHFD- or HFHC-induced MASH models. Moreover, GSDME knockout resulted in increased energy expenditure, inhibited intestinal nutrient absorption, and reduced body weight. In the mice with GSDME deficiency, reintroduction of GSDME in myeloid cells-rather than hepatocytes-mimicked the MASH pathologies and metabolic dysfunctions, as well as the changes in the formation of neutrophil extracellular traps and hepatic macrophage/monocyte subclusters. These subclusters included shifts in Tim4+ or CD163+ resident Kupffer cells, Ly6Chi pro-inflammatory monocytes, and Ly6CloCCR2loCX3CR1hi patrolling monocytes. Integrated analyses of RNA sequencing and quantitative proteomics revealed a significant GSDME-dependent reduction in citrullination at the arginine-114 (R114) site of dynamin-related protein 1 (Drp1) during MASH. Mutation of Drp1 at R114 reduced its stability, impaired its ability to redistribute to mitochondria and regulate mitophagy, and ultimately promoted its degradation under MASH stress. GSDME deficiency reversed the de-citrullination of Drp1R114, preserved Drp1 stability, and enhanced mitochondrial function. Our study highlights the role of GSDME in promoting MASH through regulating pyroptosis, Drp1 citrullination-dependent mitochondrial function, and energy balance in the intestine and liver, and suggests that GSDME may be a potential therapeutic target for managing MASH.

13.
Langmuir ; 40(28): 14413-14425, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38946296

ABSTRACT

Atmospheric water harvesting (AWH) technology is a new strategy for alleviating freshwater scarcity. Adsorbent materials with high hygroscopicity and high photothermal conversion efficiency are the key to AWH technology. Hence, in this study, a simple and large-scale preparation for a hygroscopic compound of polyurethane (PU) sponge-grafted calcium alginate (CA) with carbon ink (SCAC) was developed. The PU sponge in the SCAC aerogel acts as a substrate, CA as a moisture adsorber, and carbon ink as a light adsorber. The SCAC aerogel exhibits excellent water absorption of 0.555-1.40 g·g-1 within a wide range of relative humidity (40-80%) at 25 °C. The SCAC aerogel could release adsorbed water driven by solar energy, and more than 92.17% of the adsorbed water could be rapidly released over a wide solar intensity range of 1.0-2.0 sun. In an outdoor experiment, 57.517 g of SCAC was able to collect 32.8 g of clean water in 6 h, and the water quality meets the drinking water standards set by the World Health Organization. This study suggests a new approach to design promising AWH materials and infers the potential practical application of SCAC aerogel-based adsorbents.

14.
J Environ Manage ; 367: 121946, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39079495

ABSTRACT

In this research, the effects of peracetic acid (PAA), polymeric flocculants, and their combined conditioning on improving the dewatering performance were comprehensively evaluated. The results showed that sludge cake moisture content, capillary suction time (CST), and specific resistance to filtration (SRF) were 70.6%, 48.1 s, and 3.42 × 1012 m/kg after adding 0.10 g/gMLSS PAA for 50 min, representing reductions of 12.60%, 40.32%, and 33.98%, respectively. Additionally, conditioning of sludge with polyferric sulfate (PFS), polyaluminum chloride (PAC), and cationic polyacrylamide (CPAM) enhanced sludge properties in the following order: CPAM > PAC > PFS. After the PAA oxidation and re-flocculation process, the optimal dosages of PFS, PAC, and CPAM were reduced to 1.5 g/L, 0.9 g/L, and 0.04 g/L, respectively. The sludge dewatering performance significantly improved, with sludge cake moisture content measuring 65.8%, 66.3%, and 61.7%, respectively. Moreover, the spatial multi-porous skeleton structures were formed via re-flocculation to improve the sludge dewatering. Furthermore, economic evaluation validated that the pre-oxidation and re-flocculation process could be considered an economically viable option. These research findings could serve as a valuable reference for practical engineering applications.


Subject(s)
Flocculation , Peracetic Acid , Sewage , Sewage/chemistry , Peracetic Acid/chemistry , Oxidation-Reduction , Polymers/chemistry , Filtration , Waste Disposal, Fluid/methods , Porosity , Acrylic Resins/chemistry
15.
New Phytol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044689

ABSTRACT

N6-methyladenosine (m6A) RNA modification is the most prevalent messenger RNA (mRNA) modification in eukaryotes and plays critical roles in the regulation of gene expression. m6A is a reversible RNA modification that is deposited by methyltransferases (writers) and removed by demethylases (erasers). The function of m6A erasers in plants is highly diversified and their roles in cereal crops, especially in reproductive development essential for crop yield, are largely unknown. Here, we demonstrate that rice OsALKBH5 acts as an m6A demethylase required for the normal progression of male meiosis. OsALKBH5 is a nucleo-cytoplasmic protein, highly enriched in rice anthers during meiosis, that associates with P-bodies and exon junction complexes, suggesting that it is involved in regulating mRNA processing and abundance. Mutations of OsALKBH5 cause reduced double-strand break (DSB) formation, severe defects in DSB repair, and delayed meiotic progression, leading to complete male sterility. Transcriptome analysis and m6A profiling indicate that OsALKBH5-mediated m6A demethylation stabilizes the mRNA level of multiple meiotic genes directly or indirectly, including several genes that regulate DSB formation and repair. Our study reveals the indispensable role of m6A metabolism in post-transcriptional regulation of meiotic progression in rice.

16.
J Eukaryot Microbiol ; : e13029, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030770

ABSTRACT

Microsporidia are prolific producers of effector molecules, encompassing both proteins and nonproteinaceous effectors, such as toxins, small RNAs, and small peptides. These secreted effectors play a pivotal role in the pathogenicity of microsporidia, enabling them to subvert the host's innate immunity and co-opt metabolic pathways to fuel their own growth and proliferation. However, the genomes of microsporidia, despite falling within the size range of bacteria, exhibit significant reductions in both structural and physiological features, thereby affecting the repertoire of secretory effectors to varying extents. This review focuses on recent advances in understanding how microsporidia modulate host cells through the secretion of effectors, highlighting current challenges and proposed solutions in deciphering the complexities of microsporidial secretory effectors.

17.
Acta Trop ; 257: 107302, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959992

ABSTRACT

Toxoplasma gondii is an important protozoan pathogen, which can cause severe diseases in the newborns and immunocompromised individuals. Developing an effective vaccine against Toxoplasma infection is a critically important global health priority. Immunofluorescence staining analysis revealed that TgSAG2 and TgSRS2 are membrane associated and displayed on the surface of the parasite. Immunizations with pBud-SAG2, pBud-SRS2 and pBud-SAG2-SRS2 DNA vaccines significantly increased the production of specific IgG antibodies. Immunization with pBud-SAG2-SRS2 elicited cellular immune response with higher concentrations of IFN-γ and IL-4 compared to the control group. Antigen-specific lymphocyte proliferations in the pBud-SRS2 and pBud-SAG2-SRS2 groups were significantly higher compared to that in the control group. Furthermore, 30 % of mice immunized with pBud-SAG2-SRS2 survived after the challenge infection with virulent T. gondii RH tachyzoites. This study revealed that immunization with pBud-SAG2-SRS2 induced potent immune responses, and has the potential as a promising vaccine candidate for the control of T. gondii infection.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Protozoan Proteins , Protozoan Vaccines , Toxoplasma , Toxoplasmosis, Animal , Vaccines, DNA , Animals , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Toxoplasma/immunology , Toxoplasma/genetics , Antibodies, Protozoan/blood , Protozoan Vaccines/immunology , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Mice , Immunoglobulin G/blood , Female , Toxoplasmosis, Animal/prevention & control , Toxoplasmosis, Animal/immunology , Mice, Inbred BALB C , Interferon-gamma/immunology , Disease Models, Animal , Cell Proliferation , Interleukin-4/immunology , Survival Analysis
18.
Environ Int ; 190: 108870, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972114

ABSTRACT

OBJECTIVE: Dementia is an important disease burden among the elderly, and its occurrence may be profoundly affected by environmental factors. Evidence of the relationship between air pollution and dementia is emerging, but the extent to which this can be offset by lifestyle factors remains ambiguous. METHODS: This study comprised 155,828 elder adults aged 60 years and above in the UK Biobank who were dementia-free at baseline. Cox proportional hazard models were conducted to examine the associations of annual average levels of air pollutants in 2010, including nitrogen dioxide (NO2), nitrogen oxides (NOX), particulate matter (PM2.5, PM10, and PMcoarse) and lifestyle factors recorded at baseline [physical activity (PA), sleep patterns, or smoking status] with incident risk of dementia, and their interactions on both multiplicative and additive scales. RESULTS: During a 12-year period of follow-up, 4,389 incidents of all-cause dementia were identified. For each standarddeviationincrease in ambient NO2, NOX or PM2.5, all-cause dementia risk increases by 1.07-fold [hazard ratio (HR) and 95 % confidence interval (CI) = 1.07 (1.04, 1.10)], 1.05-fold (95 % CI: 1.02, 1.08) and 1.07-fold (95 % CI: 1.04, 1.10), whereas low levels of PA, poor sleep patterns, and smoking are associated with an elevated risk of dementia [HR (95 % CI) = 1.17 (1.09, 1.26), 1.13 (1.00, 1.27), and 1.14 (1.07, 1.21), respectively]. Furthermore, these air pollutants show joint effects with low PA, poor sleep patterns, and smoking on the onset of dementia. The moderate to high levels of PA could significantly or marginally significantly modify the associations between NO2, NOX or PM2.5 (P-int = 0.067, 0.036, and 0.067, respectively) and Alzheimer's disease (AD), but no significant modification effects are found for sleep patterns or smoking status. CONCLUSION: The increased exposures of NO2, NOX, or PM2.5 are associated with elevated risk of dementia among elderly UK Biobank population. These air pollutants take joint effects with low PA, poor sleep patterns, and smoking on the development of dementia. In addition, moderate to high levels of PA could attenuate the incident risk of AD caused by air pollution. Further prospective researches among other cohort populations are warranted to validate these findings.


Subject(s)
Air Pollutants , Air Pollution , Dementia , Environmental Exposure , Life Style , Particulate Matter , Humans , Dementia/epidemiology , Dementia/chemically induced , Aged , Air Pollution/statistics & numerical data , Male , Female , United Kingdom/epidemiology , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Prospective Studies , Particulate Matter/analysis , Middle Aged , Nitrogen Dioxide/analysis , Biological Specimen Banks , Aged, 80 and over , Incidence , Risk Factors , Nitrogen Oxides/analysis , Proportional Hazards Models , UK Biobank
19.
Front Biosci (Landmark Ed) ; 29(6): 233, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38940043

ABSTRACT

BACKGROUND: This study investigated the mechanism by which tazarotene-induced gene 1 (TIG1) inhibits melanoma cell growth. The main focus was to analyze downstream genes regulated by TIG1 in melanoma cells and its impact on cell growth. METHODS: The effects of TIG1 expression on cell viability and death were assessed using water-soluble tetrazolium 1 (WST-1) mitochondrial staining and lactate dehydrogenase release assays. RNA sequencing and Western blot analysis were employed to investigate the genes regulated by TIG1 in melanoma cells. Additionally, the correlation between TIG1 expression and its downstream genes was analyzed in a melanoma tissue array. RESULTS: TIG1 expression in melanoma cells was associated with decreased cell viability and increased cell death. RNA-sequencing (RNA-seq), quantitative reverse transcription PCR (reverse RT-QPCR), and immunoblots revealed that TIG1 expression induced the expression of Endoplasmic Reticulum (ER) stress response-related genes such as Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 (HERPUD1), Binding immunoglobulin protein (BIP), and DNA damage-inducible transcript 3 (DDIT3). Furthermore, analysis of the melanoma tissue array revealed a positive correlation between TIG1 expression and the expression of HERPUD1, BIP, and DDIT3. Additionally, attenuation of the ER stress response in melanoma cells weakened the impact of TIG1 on cell growth. CONCLUSIONS: TIG1 expression effectively hinders the growth of melanoma cells. TIG1 induces the upregulation of ER stress response-related genes, leading to an increase in caspase-3 activity and subsequent cell death. These findings suggest that the ability of retinoic acid to prevent melanoma formation may be associated with the anticancer effect of TIG1.


Subject(s)
Cell Survival , Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Melanoma , Humans , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/drug effects , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cell Death/genetics , Apoptosis/genetics , Apoptosis/drug effects , Cell Proliferation/genetics , Cell Proliferation/drug effects , Membrane Proteins
20.
Environ Sci Technol ; 58(27): 12225-12236, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38885124

ABSTRACT

Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H+, contributing to more than 35.6% of H2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.


Subject(s)
Borohydrides , Boron , Iron , Iron/chemistry , Borohydrides/chemistry , Boron/chemistry , Chromium/chemistry , Electrons , Alloys/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL