Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters








Publication year range
1.
ACS Omega ; 9(29): 32210-32225, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39072143

ABSTRACT

Advanced description of pressure drop funnel is crucial in coalbed methane (CBM) production because of dewatering and depressurization methods. Improving the precision of the pressure drop funnel description facilitates obtaining the actual production status and productivity potential, both pivotal for responsible development plans. The study presents a semianalytical model that integrates pressure profiles and material balance equations, incorporating inner and outer boundary conditions, and dynamic reservoir characteristics. The pressure propagation characteristics in undersaturated coal reservoirs are described during the production life of CBM wells, and the model is validated using two wells with different production characteristics. The results indicate that the effect of water saturation on the expansion of the drainage radius surpasses that of the desorption radius, demonstrating a more precise prediction of the production boundary when dynamic water saturation is considered. Additionally, a rapid drop rate of bottomhole flowing pressure triggers simultaneous propagation of the drainage and desorption radii, resulting in a smaller production boundary and fewer well-controlled resources. Conversely, an appropriate production strategy results in a larger drainage radius and lower boundary pressure before massive gas desorption, thereby facilitating efficient propagation of the pressure drop funnel. Moreover, the pressure drop funnel characterized by the model can compute the dynamic CBM resources and recovery efficiency of a single well, providing a valuable basis for assessing productivity potential. In summary, this model offers a time-saving and practical tool for describing the dynamic pressure drop funnel in various CBM production stages and promoting efficient development for undersaturated CBM reservoirs.

2.
ACS Appl Bio Mater ; 7(5): 3154-3163, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38695332

ABSTRACT

ß-Galactosidase (ß-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor ß-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine ß-Gala activity effectively. Via the sensing performance, the catalytic activity of ß-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-ß-d-galactopyranoside (KOßDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing ß-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of ß-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.


Subject(s)
Breast Neoplasms , Kaempferols , Nanoparticles , Silicon , beta-Galactosidase , Female , Humans , beta-Galactosidase/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Colorimetry , Kaempferols/chemistry , Kaempferols/pharmacology , MCF-7 Cells , Molecular Structure , Nanoparticles/chemistry , Particle Size , Silicon/chemistry
3.
Eur J Med Res ; 29(1): 288, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750605

ABSTRACT

OBJECTIVE: To explore the effect of dynamic changes in free triiodothyronine (FT3) level for predicting the 90 day prognosis of patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). METHODS: The clinical data of 122 hospitalised patients with HBV-ACLF between September 2018 and January 2020 were collected and divided into a survival group (77 cases) and a death group (45 cases) according to the 90 day prognosis. We statistically analysed the characteristics of FT3 changes in the two groups of patients. Binary logistic regression one-way analysis was used to assess the degree of influence of each factor. The Kaplan-Meier survival curve and receiver operating characteristic curve were used to evaluate the effect of a single change in FT3 level difference (single △FT3) and the FT3 level change range (△FT3 range) in predicting the 90-day prognosis of patients. RESULTS: There were only three types of changes in FT3 levels, which included 19 (15.6%) cases of continuous normal type, 35 (28.7%) cases of continuous decrease type and 68 (55.7%) cases of U-shaped change type. The difference in survival curves between the three types of patients was statistically significant (P < 0.001). CONCLUSION: The dynamic change type of FT3 is related to the disease severity and 90-day prognosis of patients with HBV-ACLF. The single FT3 value and FT3 range could be used as a predictive factor for the 90-day prognosis of patients with HBV-ACLF. These results have a degree of research value and are worth further exploration in the future.


Subject(s)
Acute-On-Chronic Liver Failure , Triiodothyronine , Humans , Female , Male , Triiodothyronine/blood , Prognosis , Middle Aged , Adult , Acute-On-Chronic Liver Failure/blood , Acute-On-Chronic Liver Failure/mortality , Acute-On-Chronic Liver Failure/diagnosis , Acute-On-Chronic Liver Failure/virology , Hepatitis B virus , Hepatitis B/complications , ROC Curve , Retrospective Studies , Kaplan-Meier Estimate
4.
Int J Biol Macromol ; 258(Pt 2): 129116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171192

ABSTRACT

Vascular Plant One­zinc Finger (VOZ) transcription factor can respond to a variety of abiotic stresses, however its function in cotton and the molecular mechanisms of response to salt tolerance remained unclear. In this study, we found that GhVOZ1 is highly expressed in stamen and stem of cotton under normal conditions. The expression of GhVOZ1 increased significantly after 3 h of salt treatment in three-leaf staged upland cotton. Overexpressed transgenic lines of GhVOZ1 in Arabidopsis and upland cotton were treated with salt stress and we found that GhVOZ1 could respond positively to salt stress. GhVOZ1 can regulate Arabidopsis Vacuolar Proton Pump Pyrophosphatase (H+-PPase) gene (AVP1) expression through specific binding to GCGTCTAAAGTACGC site on GhAVP1 promoter, which was examined through Dual-luciferase assay and Electrophoretic mobility shift assay (EMSA). AVP1 expression was significantly increased in Arabidopsis with GhVOZ1 overexpression, while GhAVP1 expression was decreased in virus induced gene silenced (VIGS) cotton plants of GhVOZ1. Knockdown of GhAVP1 expression in cotton plants by VIGS showed decreased superoxide dismutase (SOD) and peroxidase (POD) activities, whereas an increased malondialdehyde (MDA) content and ultimately decreased salt tolerance. The GhVOZ1-AVP1 module could maintain sodium ion homeostasis through cell ion transport and positively regulate the salt tolerance in cotton, providing new ideas and insights for the study of salt tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gossypium/genetics , Salt Tolerance/genetics , Arabidopsis/genetics , Plants, Genetically Modified/genetics , Arabidopsis Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism
5.
Plant J ; 117(3): 694-712, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37988560

ABSTRACT

Xyloglucan, an important hemicellulose, plays a crucial role in maintaining cell wall structure and cell elongation. However, the effects of xyloglucan on cotton fiber development are not well understood. GhMUR3 encodes a xyloglucan galactosyltransferase that is essential for xyloglucan synthesis and is highly expressed during fiber elongation. In this study, we report that GhMUR3 participates in cotton fiber development under the regulation of GhMYB30. Overexpression GhMUR3 affects the fiber elongation and cell wall thickening. Transcriptome showed that the expression of genes involved in secondary cell wall synthesis was prematurely activated in OE-MUR3 lines. In addition, GhMYB30 was identified as a key regulator of GhMUR3 by Y1H, Dual-Luc, and electrophoretic mobility shift assay (EMSA) assays. GhMYB30 directly bound the GhMUR3 promoter and activated GhMUR3 expression. Furthermore, DAP-seq of GhMYB30 was performed to identify its target genes in the whole genome. The results showed that many target genes were associated with fiber development, including cell wall synthesis-related genes, BR-related genes, reactive oxygen species pathway genes, and VLCFA synthesis genes. It was demonstrated that GhMYB30 may regulate fiber development through multiple pathways. Additionally, GhMYB46 was confirmed to be a target gene of GhMYB30 by EMSA, and GhMYB46 was significantly increased in GhMYB30-silenced lines, indicating that GhMYB30 inhibited GhMYB46 expression. Overall, these results revealed that GhMUR3 under the regulation of GhMYB30 and plays an essential role in cotton fiber elongation and secondary wall thickening. Additionally, GhMYB30 plays an important role in the regulation of fiber development and regulates fiber secondary wall synthesis by inhibiting the expression of GhMYB46.


Subject(s)
Cotton Fiber , Genes, Plant , Transcriptome , Carbohydrate Metabolism , Gossypium/genetics , Gene Expression Regulation, Plant , Cell Wall/metabolism
6.
Tree Physiol ; 44(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38123505

ABSTRACT

Wood formation is a complex developmental process under the control of multiple levels of regulatory transcriptional network and hormone signals in trees. It is well known that cytokinin (CK) signaling plays an important role in maintaining the activity of the vascular cambium. The CK response factors (CRFs) encoding a subgroup of AP2 transcription factors have been identified to mediate the CK-dependent regulation in different plant developmental processes. However, the functions of CRFs in wood development remain unclear. Here, we characterized the function of PtCRF1, a CRF transcription factor isolated from poplar, in the process of wood formation. The PtCRF1 is preferentially expressed in secondary vasculature, especially in vascular cambium and secondary phloem, and encodes a transcriptional activator. Overexpression of PtCRF1 in transgenic poplar plants led to a significant reduction in the cell layer number of vascular cambium. The development of wood tissue was largely promoted in the PtCRF1-overexpressing lines, while it was significantly compromised in the CRISPR/Cas9-generated double mutant plants of PtCRF1 and its closest homolog PtCRF2. The RNA sequencing (RNA-seq) and quantitative reverse transcription PCR (RT-qPCR) analyses showed that PtCRF1 repressed the expression of the typical CK-responsive genes. Furthermore, bimolecular fluorescence complementation assays revealed that PtCRF1 competitively inhibits the direct interactions between histidine phosphotransfer proteins and type-B response regulator by binding to PtHP protein. Collectively, these results indicate that PtCRF1 negatively regulates CK signaling and is required for woody cell differentiation in poplar.


Subject(s)
Populus , Wood , Cytokinins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phloem/metabolism , Gene Expression Regulation, Plant , Populus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
7.
Mol Plant ; 17(1): 112-140, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38102833

ABSTRACT

Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.


Subject(s)
Lignin , Wood , Wood/genetics , Wood/metabolism , Lignin/metabolism , Ecosystem , Plants/metabolism , Cell Wall/metabolism , Trees/genetics
8.
BMC Plant Biol ; 23(1): 653, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38110862

ABSTRACT

BACKGROUND: Cotton, being extensively cultivated, holds immense economic significance as one of the most prominent crops globally. The SET (Su(var), E, and Trithorax) domain-containing protein is of significant importance in plant development, growth, and response to abiotic stress by modifying the lysine methylation status of histone. However, the comprehensive identification of SET domain genes (SDG) have not been conducted in upland cotton (Gossypium hirsutum L.). RESULTS: A total of 229 SDGs were identified in four Gossypium species, including G. arboretum, G. raimondii, G. hirsutum, and G. barbadense. These genes could distinctly be divided into eight groups. The analysis of gene structure and protein motif revealed a high degree of conservation among the SDGs within the same group. Collinearity analysis suggested that the SDGs of Gossypium species and most of the other selected plants were mainly expanded by dispersed duplication events and whole genome duplication (WGD) events. The allopolyploidization event also has a significant impact on the expansion of SDGs in tetraploid Gossypium species. Furthermore, the characteristics of these genes have been relatively conserved during the evolution. Cis-element analysis revealed that GhSDGs play a role in resistance to abiotic stresses and growth development. Furthermore, the qRT-PCR results have indicated the ability of GhSDGs to respond to salt stress. Co-expression analysis revealed that GhSDG51 might co-express with genes associated with salt stress. In addition, the silencing of GhSDG51 in cotton by the virus-induced gene silencing (VIGS) method suggested a potential positive regulatory role of GhSDG51 in salt stress. CONCLUSIONS: The results of this study comprehensively analyze the SDGs in cotton and provide a basis for understanding the biological role of SDGs in the stress resistance in upland cotton.


Subject(s)
Genome, Plant , Gossypium , Genome, Plant/genetics , Gossypium/genetics , Multigene Family , PR-SET Domains , Stress, Physiological/genetics , Salt Stress/genetics , Phylogeny , Plant Proteins/genetics , Gene Expression Regulation, Plant
9.
BMC Surg ; 23(1): 338, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940892

ABSTRACT

BACKGROUND: Robot-assisted and endoscopic thyroidectomy are superior to conventional open thyroidectomy in improving cosmetic outcomes and postoperative quality of life. The procedure of these thyroidectomies was similar in terms of surgical view, feasibility, and invasiveness. However, it remains uncertain whether the robotic-assisted bilateral axilla-breast approach (BABA) was superior to the endoscopic bilateral areolar approach (BAA) thyroidectomy. This study aimed to investigate the clinical benefit of these two surgical procedures to evaluate the difference between these two surgical procedures by comparing the pathological and surgical outcomes of endoscopic BAA and robotic-assisted BABA thyroidectomy in differentiated thyroid carcinoma. METHODS: From November 2018 to September 2021, 278 patients with differentiated thyroid carcinoma underwent BABA robot-assisted, and 49 underwent BAA approach endoscopic thyroidectomy. Of these patients, we analyzed 42 and 135 patients of endoscopic and robotic matched pairs using 1:4 propensity score matching and retrospective cohort study methods. These two groups were retrospectively compared by surgical outcomes, clinicopathological characteristics, and postoperative complications. RESULTS: The mean operation time was significantly longer in the EG than in the RG (p < 0.001), The number of retrieved lymph nodes was significantly lower in the ET group than in the RT group (p < 0.001). The mean maximum diameter of the thyroid was more expansive in the EG than in the RG (p = 0.04). There were no significant differences in the total drainage amount and drain insertion days between the two groups (p = 0.241, p = 0.316, respectively). Both groups showed that cosmetic satisfaction (p = 0.837) and pain score (p = 0.077) were similar. There were no significant differences in complication frequencies. CONCLUSION: Robotic and endoscopic thyroidectomy are similar minimally invasive thyroid surgeries, each with its advantages, both of which can achieve the expected surgical outcomes. TRIAL REGISTRATION: Retrospectively registered.


Subject(s)
Adenocarcinoma , Robotic Surgical Procedures , Thyroid Neoplasms , Humans , Thyroidectomy/methods , Robotic Surgical Procedures/methods , Quality of Life , Retrospective Studies , Neck Dissection/methods , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Nipples , Adenocarcinoma/surgery
10.
Plants (Basel) ; 12(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960096

ABSTRACT

Salt stress is a major abiotic stressor that can severely limit plant growth, distribution, and crop yield. DNA-binding with one finger (Dof) is a plant-specific transcription factor that plays a crucial role in plant growth, development, and stress response. In this study, the function of a Dof transcription factor, GhDof1.7, was investigated in upland cotton. The GhDof1.7 gene has a coding sequence length of 759 base pairs, encoding 252 amino acids, and is mainly expressed in roots, stems, leaves, and inflorescences. Salt and abscisic acid (ABA) treatments significantly induced the expression of GhDof1.7. The presence of GhDof1.7 in Arabidopsis may have resulted in potential improvements in salt tolerance, as suggested by a decrease in H2O2 content and an increase in catalase (CAT) and superoxide dismutase (SOD) activities. The GhDof1.7 protein was found to interact with GhCAR4 (C2-domain ABA-related 4), and the silencing of either GhDof1.7 or GhCAR4 resulted in reduced salt tolerance in cotton plants. These findings demonstrate that GhDof1.7 plays a crucial role in improving the salt tolerance of upland cotton and provide insight into the regulation of abiotic stress response by Dof transcription factors.

11.
J Agric Food Chem ; 71(40): 14814-14824, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37782472

ABSTRACT

Residues of endocrine disrupting steroid hormones in food might cause various diseases like cardiovascular diseases and breast and prostate cancers. Monitoring steroid hormone levels plays a vital role in ensuring food safety and exploring the pathogenic mechanism of steroid hormone-related diseases. Based on the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, a novel chemoselective probe, Azo-N3, which contains a reactive site N3, an imidazolium salt-based MS tag, and an azobenzene-based photoswitchable handle, was designed and synthesized to label ethynyl-bearing steroid hormones. The probe Azo-N3 was applied for the highly selective and sensitive detection of four ethynyl-bearing steroid hormones in food samples (milk, egg, and pork) by using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The ionization efficiency of the labeled analytes could be increased by 6-105-fold, and such a labeled method exhibited satisfactory detection limits (0.04-0.2 µg/L), recovery (80.6-122.4%), and precision (RSDs% lower than 6.9%). Interestingly, the efficient immobilization of the probe Azo-N3 onto α-cyclodextrin (α-CD)-modified magnetic particles to construct a solid supported chemoselective probe Fe3O4-CD-Azo-N3 and UV light-controlled release of the labeled analytes from a magnetic support can be achieved by taking advantage of the photoswitched host-guest inclusion between the azobenzene unit and α-CD. The potential applications of Fe3O4-CD-Azo-N3 for labeling, capturing, and the photocontrolled release of the labeled steroid hormones were fully investigated by mass spectrometry imaging analysis. This work not only provides a sensitive and accurate method to detect steroid hormones in food but also opens a new avenue in designing solid supported chemoselective probes.


Subject(s)
Hormones , Tandem Mass Spectrometry , Humans , Male , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Steroids/chemistry , Chromatography, High Pressure Liquid/methods
12.
Anal Chim Acta ; 1280: 341880, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37858561

ABSTRACT

ß-Glucosidase (ß-Gluco) is an enzyme that is crucial to numerous diseases, including cancer, and in sector of industries, it is used in the manufacturing of food. Measuring its enzymatic activity is critical for biomedical studies and other activities. Herein, we have developed a novel and precise fluorescent sensing method for measuring ß-Gluco activity based on the production of yellow-green fluorescent quercetin-silicon nanoparticles (Q-SiNPs) produced from quercetin (QN) as a reducing agent and 3-[2-(2-aminoethyl amino) ethylamino] propyl-trimethoxy silane (AEEA) as a silane molecule. ß-Gluco hydrolyzed quercetin-3-O-ß-d-glucopyranoside (QO-ß-DG) to produce QN, which was then used to produce Q-SiNPs. Reaction parameters, including temperature, time, buffer, pH, and probe concentration, were carefully tuned in this study. Subsequently, the fluorescence intensity was performed, showing good linearity (R2 = 0.989), a broad linear dynamic range between 0.5 and 12 U L-1, and a limit of detection (LOD) as low as 0.428 U L-1, which was proven by fluorescence measurements. Most importantly, various parameters were detected and characterized with or without ß-Gluco. The designed probe was successively used to assess ß-Gluco activity in human serum and moldy bread. However, the mathematical findings revealed recoveries for human serum ranging from 99.3 to 101.66% and for moldy bread from 100.11 to 102.5%. Additionally, Q-SiNPs were well suited to being incubated in vitro with L929 and SiHa living cells, and after using an Olympus microscope, imaging showed good fluorescence cell images, and their viability evinced minimal cytotoxicity of 77% for L929 and 88% for SiHa. The developed fluorescence biosensor showed promise for general use in diagnostic tests. Therefore, due to this outstanding sensing modality, we anticipate that this research can provide a novel schematic project for creating simple nanostructures with a suitable plan and a green synthetic option for enzyme activity and cell imaging.


Subject(s)
Cellulases , Nanoparticles , Humans , Quercetin , Silicon/chemistry , Silanes , Nanoparticles/chemistry , Fluorescent Dyes/chemistry
13.
BMC Genomics ; 24(1): 467, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596513

ABSTRACT

BACKGROUND: Phloem protein 2 (PP2) proteins play a vital role in the Phloem-based defense (PBD) and participate in many abiotic and biotic stress. However, research on PP2 proteins in cotton is still lacking. RESULTS: A total of 25, 23, 43, and 47 PP2 genes were comprehensively identified and characterized in G.arboretum, G.raimondii, G.barbadense, and G.hirsutum. The whole genome duplication (WGD) and allopolyploidization events play essential roles in the expansion of PP2 genes. The promoter regions of GhPP2 genes contain many cis-acting elements related to abiotic stress and the weighted gene co-expression network analysis (WGCNA) analysis displayed that GhPP2s could be related to salt stress. The qRT-PCR assays further confirmed that GhPP2-33 could be dramatically upregulated during the salt treatment. And the virus-induced gene silencing (VIGS) experiment proved that the silencing of GhPP2-33 could decrease salt tolerance. CONCLUSIONS: The results in this study not only offer new perspectives for understanding the evolution of PP2 genes in cotton but also further explore their function under salt stress.


Subject(s)
Gossypium , Plant Proteins , Salt Tolerance , Gossypium/genetics , Plant Lectins , Salt Stress , Salt Tolerance/genetics , Plant Proteins/metabolism
14.
J Med Internet Res ; 25: e47225, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37267022

ABSTRACT

BACKGROUND: Social media platforms have been increasingly used to express suicidal thoughts, feelings, and acts, raising public concerns over time. A large body of literature has explored the suicide risks identified by people's expressions on social media. However, there is not enough evidence to conclude that social media provides public surveillance for suicide without aligning suicide risks detected on social media with actual suicidal behaviors. Corroborating this alignment is a crucial foundation for suicide prevention and intervention through social media and for estimating and predicting suicide in countries with no reliable suicide statistics. OBJECTIVE: This study aimed to corroborate whether the suicide risks identified on social media align with actual suicidal behaviors. This aim was achieved by tracking suicide risks detected by 62 million tweets posted in Japan over a 10-year period and assessing the locational and temporal alignment of such suicide risks with actual suicide behaviors recorded in national suicide statistics. METHODS: This study used a human-in-the-loop approach to identify suicide-risk tweets posted in Japan from January 2013 to December 2022. This approach involved keyword-filtered data mining, data scanning by human efforts, and data refinement via an advanced natural language processing model termed Bidirectional Encoder Representations from Transformers. The tweet-identified suicide risks were then compared with actual suicide records in both temporal and spatial dimensions to validate if they were statistically correlated. RESULTS: Twitter-identified suicide risks and actual suicide records were temporally correlated by month in the 10 years from 2013 to 2022 (correlation coefficient=0.533; P<.001); this correlation coefficient is higher at 0.652 when we advanced the Twitter-identified suicide risks 1 month earlier to compare with the actual suicide records. These 2 indicators were also spatially correlated by city with a correlation coefficient of 0.699 (P<.001) for the 10-year period. Among the 267 cities with the top quintile of suicide risks identified from both tweets and actual suicide records, 73.5% (n=196) of cities overlapped. In addition, Twitter-identified suicide risks were at a relatively lower level after midnight compared to a higher level in the afternoon, as well as a higher level on Sundays and Saturdays compared to weekdays. CONCLUSIONS: Social media platforms provide an anonymous space where people express their suicidal thoughts, ideation, and acts. Such expressions can serve as an alternative source to estimating and predicting suicide in countries without reliable suicide statistics. It can also provide real-time tracking of suicide risks, serving as an early warning for suicide. The identification of areas where suicide risks are highly concentrated is crucial for location-based mental health planning, enabling suicide prevention and intervention through social media in a spatially and temporally explicit manner.


Subject(s)
Deep Learning , Social Media , Suicide , Humans , Japan , Time Factors , Suicide/psychology
15.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902489

ABSTRACT

The CCCH zinc-finger protein contains a typical C3H-type motif widely existing in plants, and it plays an important role in plant growth, development, and stress responses. In this study, a CCCH zinc-finger gene, GhC3H20, was isolated and thoroughly characterized to regulate salt stress in cotton and Arabidopsis. The expression of GhC3H20 was up-regulated under salt, drought, and ABA treatments. GUS activity was detected in the root, stem, leaves, and flowers of ProGhC3H20::GUS transgenic Arabidopsis. Compared with the control, the GUS activity of ProGhC3H20::GUS transgenic Arabidopsis seedlings under NaCl treatment was stronger. Through the genetic transformation of Arabidopsis, three transgenic lines of 35S-GhC3H20 were obtained. Under NaCl and mannitol treatments, the roots of the transgenic lines were significantly longer than those of the wild-type (WT) Arabidopsis. The leaves of the WT turned yellow and wilted under high-concentration salt treatment at the seedling stage, while the leaves of the transgenic Arabidopsis lines did not. Further investigation showed that compared with the WT, the content of catalase (CAT) in the leaves of the transgenic lines was significantly higher. Therefore, compared with the WT, overexpression of GhC3H20 enhanced the salt stress tolerance of transgenic Arabidopsis. A virus-induced gene silencing (VIGS) experiment showed that compared with the control, the leaves of pYL156-GhC3H20 plants were wilted and dehydrated. The content of chlorophyll in pYL156-GhC3H20 leaves was significantly lower than those of the control. Therefore, silencing of GhC3H20 reduced salt stress tolerance in cotton. Two interacting proteins (GhPP2CA and GhHAB1) of GhC3H20 have been identified through a yeast two-hybrid assay. The expression levels of PP2CA and HAB1 in transgenic Arabidopsis were higher than those in the WT, and pYL156-GhC3H20 had expression levels lower than those in the control. GhPP2CA and GhHAB1 are the key genes involved in the ABA signaling pathway. Taken together, our findings demonstrate that GhC3H20 may interact with GhPP2CA and GhHAB1 to participate in the ABA signaling pathway to enhance salt stress tolerance in cotton.


Subject(s)
Gossypium , Plant Proteins , Salt Tolerance , Arabidopsis/genetics , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Seedlings/metabolism , Signal Transduction/genetics , Sodium Chloride/metabolism , Stress, Physiological/genetics , Zinc/metabolism , Gossypium/genetics , Zinc Fingers
16.
Talanta ; 256: 124322, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36736269

ABSTRACT

Herein, we developed a class of functionalized silicon nanoparticles (F-SiNPs) bio-probes named thiol-conjugated F-SiNPs. They combine excellent biocompatibility with small dimensions (<10 nm) and biological usefulness with sustained and robust fluorescence (3.32% photoluminescent quantum yield). Identifying 3-Mercaptopropionic acid (3-MPA), which lowers the quantity of gamma-aminobutyric acid in the brain, and mercury (Hg2+) was a crucially important step since their excessive levels are a sign of several disorders. Using F-SiNPs as a fluorescent bio-probe, we provided an "off-on" technique for sensitively and selectively determining Hg2+ and 3-MPA in this study. The 3-(2-aminoethylamino) propyl (dimethoxymethylsilane) and basic fuchsin as precursors were hydrothermally treated to produce the F-SiNPs exhibiting green fluorescence. Our results suggest that Hg2+ reduced the fluorescence of F-SiNPs because of strong ionic interactions and metal-ligand binding among many thiols and carboxyl groupings at the surface of Hg2+ and F-SiNPs. Additionally, the resultants demonstrated that after being quenched by Hg2+, the produced F-SiNPs led to the distinctive "off-on" response to 3-MPA. Moreover, the method could detect Hg2+ and 3-MPA with limits of detection of 0.065 µM and 0.017 µM, respectively. The technique employed is quick, easy, affordable, and environmentally friendly. The sensing platform has successfully determined Hg2+ and 3-MPA in urine, water, and human serum samples.


Subject(s)
Mercury , Nanoparticles , Humans , Silicon , 3-Mercaptopropionic Acid , Fluorescent Dyes , Spectrometry, Fluorescence/methods , Sulfhydryl Compounds
17.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362330

ABSTRACT

Soil salinization conditions seriously restrict cotton yield and quality. Related studies have shown that the DUF4228 proteins are pivotal in plant resistance to abiotic stress. However, there has been no systematic identification and analysis of the DUF4228 gene family in cotton and their role in abiotic stress. In this study, a total of 308 DUF4228 genes were identified in four Gossypium species, which were divided into five subfamilies. Gene structure and protein motifs analysis showed that the GhDUF4228 proteins were conserved in each subfamily. In addition, whole genome duplication (WGD) events and allopolyploidization might play an essential role in the expansion of the DUF4228 genes. Besides, many stress-responsive (MYB, MYC) and hormone-responsive (ABA, MeJA) related cis-elements were detected in the promoters of the DUF4228 genes. The qRT-PCR results showed that GhDUF4228 genes might be involved in the response to abiotic stress. VIGS assays and the measurement of relative water content (RWC), Proline content, POD activity, and malondialdehyde (MDA) content indicated that GhDUF4228-67 might be a positive regulator of cotton response to salt stress. The results in this study systematically characterized the DUF4228s in Gossypium species and will provide helpful information to further research the role of DUF4228s in salt tolerance.


Subject(s)
Gossypium , Salt Tolerance , Gossypium/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Multigene Family
18.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36293038

ABSTRACT

Abiotic stress, such as drought and salinity stress, seriously inhibit the growth and development of plants. Therefore, it is vital to understand the drought and salinity resistance mechanisms to enable cotton to provide more production under drought and salt conditions. In this study, we identified 8806 and 9108 differentially expressed genes (DEGs) through a comprehensive analysis of transcriptomic data related to the PEG-induced osmotic and salt stress in cotton. By performing weighted gene co-expression network analysis (WGCNA), we identified four co-expression modules in PEG treatment and five co-expression modules in salinity stress, which included 346 and 324 predicted transcription factors (TFs) in these modules, respectively. Correspondingly, whole genome duplication (WGD) events mainly contribute to the expansion of those TFs. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analyses revealed those different modules were associated with stress resistance, including regulating macromolecule metabolic process, peptidase activity, transporter activity, lipid metabolic process, and responses to stimulus. Quantitative RT-PCR analysis was used to confirm the expression levels of 15 hub TFs in PEG6000 and salinity treatments. We found that the hub gene GhWRKY46 could alter salt and PEG-induced drought resistance in cotton through the virus-induced gene silencing (VIGS) method. Our results provide a preliminary framework for further investigation of the cotton response to salt and drought stress, which is significant to breeding salt- and drought-tolerant cotton varieties.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Breeding , Stress, Physiological/genetics , Salt Stress/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Peptide Hydrolases/metabolism , Lipids , Gossypium/genetics , Gossypium/metabolism
19.
Front Oncol ; 12: 965838, 2022.
Article in English | MEDLINE | ID: mdl-36072791

ABSTRACT

Osteosarcoma is frequently metastasized at the time of diagnosis in patients. However, the underlying mechanism of osteosarcoma metastasis remains poorly understood. In this study, we evaluated DNA methylation profiles combined with gene expression profiles of 21 patients with metastatic osteosarcoma and 64 patients with non-metastatic osteosarcoma from TARGET database and identified PKIB and AIM2 as hub genes related to the metastasis of osteosarcoma. To verify the effects of PKIB on migration and invasion of osteosarcoma, we performed wound-healing assay and transwell assay. The results showed that PKIB significantly inhibited the migration and invasion of osteosarcoma cells, and the Western blot experiments showed that the protein level of E-cad was upregulated and of VIM was downregulated in 143-B cell recombinant expression PKIB. These results indicate that PKIB inhibit the metastasis of osteosarcoma. CCK-8 assay results showed that PKIB promote the proliferation of osteosarcoma. In addition, the Western blot results showed that the phosphorylation level of Akt was upregulated in 143-B cells overexpressing PKIB, indicating that PKIB promotes the proliferation of osteosarcoma probably through signaling pathway that Akt involved in. These results give us clues that PKIB was a potential target for osteosarcoma therapy. Furthermore, combined clinical profiles analysis showed that the expression of AIM2- and PKIB- related risk scores was significantly related to the overall survival of patients with osteosarcoma. Thus, we constructed a nomogram based on AIM2 and PKIB expression-related risk scores for osteosarcoma prognostic assessment to predict the 1-, 2-, 3-, and 5-year overall survival rate of patients with metastatic osteosarcoma, assisting clinicians in the diagnosis and treatment of metastatic osteosarcoma.

20.
BMC Genomics ; 23(1): 560, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35931984

ABSTRACT

BACKGROUND: Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that participate in a variety of biological functions, such as signaling pathways, plant development, and environmental stress and stimulus responses. Nevertheless, there have been few studies on CNGC gene family in cotton. RESULTS: In this study, a total of 114 CNGC genes were identified from the genomes of 4 cotton species. These genes clustered into 5 main groups: I, II, III, IVa, and IVb. Gene structure and protein motif analysis showed that CNGCs on the same branch were highly conserved. In addition, collinearity analysis showed that the CNGC gene family had expanded mainly by whole-genome duplication (WGD). Promoter analysis of the GhCNGCs showed that there were a large number of cis-acting elements related to abscisic acid (ABA). Combination of transcriptome data and the results of quantitative RT-PCR (qRT-PCR) analysis revealed that some GhCNGC genes were induced in response to salt and drought stress and to exogenous ABA. Virus-induced gene silencing (VIGS) experiments showed that the silencing of the GhCNGC32 and GhCNGC35 genes decreased the salt tolerance of cotton plants (TRV:00). Specifically, physiological indexes showed that the malondialdehyde (MDA) content in gene-silenced plants (TRV:GhCNGC32 and TRV:GhCNGC35) increased significantly under salt stress but that the peroxidase (POD) activity decreased. After salt stress, the expression level of ABA-related genes increased significantly, indicating that salt stress can trigger the ABA signal regulatory mechanism. CONCLUSIONS: we comprehensively analyzed CNGC genes in four cotton species, and found that GhCNGC32 and GhCNGC35 genes play an important role in cotton salt tolerance. These results laid a foundation for the subsequent study of the involvement of cotton CNGC genes in salt tolerance.


Subject(s)
Gossypium , Salt Tolerance , Abscisic Acid/pharmacology , Cyclic Nucleotide-Gated Cation Channels/genetics , Droughts , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Phylogeny , Plant Proteins/metabolism , Salt Tolerance/genetics , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL