Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Pharmacol Rev ; 72(3): 692-766, 2020 07.
Article in English | MEDLINE | ID: mdl-32576603

ABSTRACT

In contrast to nitric oxide, which has well established and important roles in the regulation of blood flow and thrombosis, neurotransmission, the normal functioning of the genitourinary system, and the inflammation response and host defense, its oxidized metabolites nitrite and nitrate have, until recently, been considered to be relatively inactive. However, this view has been radically revised over the past decade and more. Much evidence has now accumulated demonstrating that nitrite serves as a storage form of nitric oxide, releasing nitric oxide preferentially under acidic and/or hypoxic conditions but also occurring under physiologic conditions: a phenomenon that is catalyzed by a number of distinct mammalian nitrite reductases. Importantly, preclinical studies demonstrate that reduction of nitrite to nitric oxide results in a number of beneficial effects, including vasodilatation of blood vessels and lowering of blood pressure, as well as cytoprotective effects that limit the extent of damage caused by an ischemia/reperfusion insult, with this latter issue having been translated more recently to the clinical setting. In addition, research has demonstrated that the other main metabolite of the oxidation of nitric oxide (i.e., nitrate) can also be sequentially reduced through processing in vivo to nitrite and then nitrite to nitric oxide to exert a range of beneficial effects-most notably lowering of blood pressure, a phenomenon that has also been confirmed recently to be an effective method for blood pressure lowering in patients with hypertension. This review will provide a detailed description of the pathways involved in the bioactivation of both nitrate and nitrite in vivo, their functional effects in preclinical models, and their mechanisms of action, as well as a discussion of translational exploration of this pathway in diverse disease states characterized by deficiencies in bioavailable nitric oxide. SIGNIFICANCE STATEMENT: The past 15 years has seen a major revision in our understanding of the pathways for nitric oxide synthesis in the body with the discovery of the noncanonical pathway for nitric oxide generation known as the nitrate-nitrite-nitric oxide pathway. This review describes the molecular components of this pathway, its role in physiology, potential therapeutics of targeting this pathway, and their impact in experimental models, as well as the clinical translation (past and future) and potential side effects.


Subject(s)
Nitrates/metabolism , Nitrates/pharmacology , Nitric Oxide/metabolism , Nitrites/metabolism , Animals , Blood Pressure/drug effects , Humans , Randomized Controlled Trials as Topic , Signal Transduction/drug effects
2.
Sci Adv ; 6(1): eaax8358, 2020 01.
Article in English | MEDLINE | ID: mdl-31911946

ABSTRACT

Irreversible oxidation of Cys residues to sulfinic/sulfonic forms typically impairs protein function. We found that persulfidation (CysSSH) protects Cys from irreversible oxidative loss of function by the formation of CysSSO1-3H derivatives that can subsequently be reduced back to native thiols. Reductive reactivation of oxidized persulfides by the thioredoxin system was demonstrated in albumin, Prx2, and PTP1B. In cells, this mechanism protects and regulates key proteins of signaling pathways, including Prx2, PTEN, PTP1B, HSP90, and KEAP1. Using quantitative mass spectrometry, we show that (i) CysSSH and CysSSO3H species are abundant in mouse liver and enzymatically regulated by the glutathione and thioredoxin systems and (ii) deletion of the thioredoxin-related protein TRP14 in mice altered CysSSH levels on a subset of proteins, predicting a role for TRP14 in persulfide signaling. Furthermore, selenium supplementation, polysulfide treatment, or knockdown of TRP14 mediated cellular responses to EGF, suggesting a role for TrxR1/TRP14-regulated oxidative persulfidation in growth factor responsiveness.


Subject(s)
Cysteine/genetics , Oxidation-Reduction/drug effects , Thioredoxin Reductase 1/genetics , Thioredoxins/genetics , Animals , Cysteine/chemistry , Epidermal Growth Factor/genetics , HSP90 Heat-Shock Proteins/genetics , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Mice , PTEN Phosphohydrolase/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Selenium/pharmacology , Signal Transduction/drug effects , Sulfides/metabolism , Sulfides/pharmacology , Thioredoxin Reductase 1/chemistry , Thioredoxins/chemistry
3.
Chem Res Toxicol ; 14(12): 1584-9, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11743740

ABSTRACT

Nitric oxide (NO) has been found to inhibit the copper-responsive yeast transcription factor Ace1 in an oxygen-dependent manner. However, the mechanism responsible for NO-dependent inhibition of Ace1 remains unestablished. In the present study, the chemical interaction of nitrogen oxide species with Ace1 was examined using a yeast reporter system. Exposure of yeast to various nitrogen oxides, under a variety of conditions, revealed that the oxygen-dependent inhibition of Ace1 is due to the reaction of NO with O(2). The nitrosating nitrogen oxide species N(2)O(3) is likely to be the disrupter of Ace1 activity. Considering the similarity of metal-thiolate ligation in Ace1 with other mammalian metalloproteins such as metallothionein, metal chaperones, and zinc-finger proteins, these results help to understand the biochemical interactions of NO with those mammalian metalloproteins.


Subject(s)
Copper/metabolism , DNA-Binding Proteins/metabolism , Metalloproteins/metabolism , Nitrogen Oxides/toxicity , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Transcription Factors/metabolism , Dose-Response Relationship, Drug , Nitrates/toxicity , Nitrogen Oxides/metabolism , Oxygen/toxicity , Saccharomyces cerevisiae/metabolism
4.
Proc Natl Acad Sci U S A ; 98(18): 10463-8, 2001 Aug 28.
Article in English | MEDLINE | ID: mdl-11517312

ABSTRACT

Nitroxyl anion (NO(-)) is the one-electron reduction product of nitric oxide (NO( small middle dot)) and is enzymatically generated by NO synthase in vitro. The physiologic activity and mechanism of action of NO(-) in vivo remains unknown. The NO(-) generator Angeli's salt (AS, Na(2)N(2)O(3)) was administered to conscious chronically instrumented dogs, and pressure-dimension analysis was used to discriminate contractile from peripheral vascular responses. AS rapidly enhanced left ventricular contractility and concomitantly lowered cardiac preload volume and diastolic pressure (venodilation) without a change in arterial resistance. There were no associated changes in arterial or venous plasma cGMP. The inotropic response was similar despite reflex blockade with hexamethonium or volume reexpansion, indicating its independence from baroreflex stimulation. However, reflex activation did play a major role in the selective venodilation observed under basal conditions. These data contrasted with the pure NO donor diethylamine/NO, which induced a negligible inotropic response and a more balanced veno/arterial dilation. AS-induced positive inotropy, but not systemic vasodilatation, was highly redox-sensitive, being virtually inhibited by coinfusion of N-acetyl-l-cysteine. Cardiac inotropic signaling by NO(-) was mediated by calcitonin gene-related peptide (CGRP), as treatment with the selective CGRP-receptor antagonist CGRP(8-37) prevented this effect but not systemic vasodilation. Thus, NO(-) is a redox-sensitive positive inotrope with selective venodilator action, whose cardiac effects are mediated by CGRP-receptor stimulation. This fact is evidence linking NO(-) to redox-sensitive cardiac contractile modulation by nonadrenergic/noncholinergic peptide signaling. Given its cardiac and vascular properties, NO(-) may prove useful for the treatment of cardiovascular diseases characterized by cardiac depression and elevated venous filling pressures.


Subject(s)
Calcitonin Gene-Related Peptide/physiology , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Nitrogen Oxides/pharmacology , Animals , Anions , Baroreflex/drug effects , Baroreflex/physiology , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists , Cyclic GMP/physiology , Dogs , Male , Nitrates/blood , Nitric Oxide/pharmacology , Nitrites/blood , Nitrites/pharmacology , Nitrogen Oxides/metabolism , Oxidation-Reduction , Peptide Fragments/pharmacology , Signal Transduction
5.
J Biol Chem ; 276(37): 34458-64, 2001 Sep 14.
Article in English | MEDLINE | ID: mdl-11461922

ABSTRACT

Ornithine decarboxylase is the initial and rate-limiting enzyme in the polyamine biosynthetic pathway. Polyamines are found in all mammalian cells and are required for cell growth. We previously demonstrated that N-hydroxyarginine and nitric oxide inhibit tumor cell proliferation by inhibiting arginase and ornithine decarboxylase, respectively, and, therefore, polyamine synthesis. In addition, we showed that nitric oxide inhibits purified ornithine decarboxylase by S-nitrosylation. Herein we provide evidence for the chemical mechanism by which nitric oxide and S-nitrosothiols react with cysteine residues in ornithine decarboxylase to form an S-nitrosothiol(s) on the protein. The diazeniumdiolate nitric oxide donor agent 1-diethyl-2-hydroxy-2-nitroso-hydrazine acts through an oxygen-dependent mechanism leading to formation of the nitrosating agents N(2)O(3) and/or N(2)O(4). S-Nitrosoglutathione inhibits ornithine decarboxylase by an oxygen-independent mechanism likely by S-transnitrosation. In addition, we provide evidence for the S-nitrosylation of 4 cysteine residues per ornithine decarboxylase monomer including cysteine 360, which is critical for enzyme activity. Finally S-nitrosylated ornithine decarboxylase was isolated from intact cells treated with nitric oxide, suggesting that nitric oxide may regulate ornithine decarboxylase activity by S-nitrosylation in vivo.


Subject(s)
Nitric Oxide/physiology , Ornithine Decarboxylase Inhibitors , Binding Sites , Cyclic N-Oxides/pharmacology , Cysteine/metabolism , Glutathione/analogs & derivatives , Glutathione/pharmacology , Hydrazines/pharmacology , Imidazoles/pharmacology , Luminescent Measurements , Nitrogen Oxides , Nitroso Compounds/pharmacology , Ornithine Decarboxylase/chemistry , Ornithine Decarboxylase/metabolism , Photolysis , S-Nitrosoglutathione
6.
Proc Natl Acad Sci U S A ; 98(5): 2194-8, 2001 Feb 27.
Article in English | MEDLINE | ID: mdl-11226215

ABSTRACT

The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pK(a) of HNO is predicted to be 7.2 +/- 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state triplet nature of NO(-) affects the rates of acid-base chemistry of the HNO/NO(-) couple. HNO is highly reactive toward dimerization and addition of soft nucleophiles but is predicted to undergo negligible hydration (K(eq) = 6.9 x 10(-5)). HNO is predicted to exist as a discrete species in solution and is a viable participant in the chemical biology of nitric oxide and derivatives.


Subject(s)
Hydrogen-Ion Concentration , Nitrogen Oxides/chemistry , Dimerization , Solutions , Water
7.
J Biol Chem ; 276(3): 1720-7, 2001 Jan 19.
Article in English | MEDLINE | ID: mdl-11042174

ABSTRACT

The nitroxyl anion (NO-) is a highly reactive molecule that may be involved in pathophysiological actions associated with increased formation of reactive nitrogen oxide species. Angeli's salt (Na2N2O3; AS) is a NO- donor that has been shown to exert marked cytotoxicity. However, its decomposition intermediates have not been well characterized. In this study, the chemical reactivity of AS was examined and compared with that of peroxynitrite (ONOO-) and NO/N2O3. Under aerobic conditions, AS and ONOO- exhibited similar and considerably higher affinities for dihydrorhodamine (DHR) than NO/N2O3. Quenching of DHR oxidation by azide and nitrosation of diaminonaphthalene were exclusively observed with NO/N2O3. Additional comparison of ONOO- and AS chemistry demonstrated that ONOO- was a far more potent one-electron oxidant and nitrating agent of hydroxyphenylacetic acid than was AS. However, AS was more effective at hydroxylating benzoic acid than was ONOO-. Taken together, these data indicate that neither NO/N2O3 nor ONOO- is an intermediate of AS decomposition. Evaluation of the stoichiometry of AS decomposition and O2 consumption revealed a 1:1 molar ratio. Indeed, oxidation of DHR mediated by AS proved to be oxygen-dependent. Analysis of the end products of AS decomposition demonstrated formation of NO2- and NO3- in approximately stoichiometric ratios. Several mechanisms are proposed for O2 adduct formation followed by decomposition to NO3- or by oxidation of an HN2O3- molecule to form NO2-. Given that the cytotoxicity of AS is far greater than that of either NO/N2O3 or NO + O2, this study provides important new insights into the implications of the potential endogenous formation of NO- under inflammatory conditions in vivo.


Subject(s)
Nitrogen Oxides/chemistry , Nitrates/chemistry , Oxidation-Reduction , Rhodamines/chemistry
8.
Toxicol Appl Pharmacol ; 167(1): 30-6, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-10936076

ABSTRACT

The cytotoxicity of nitric oxide (NO) is well established, yet the mechanism(s) of its cytotoxicity is (are) still undefined and a matter of significant interest and speculation. Many of the previously proposed mechanisms for NO-mediated cytotoxicity involve interactions between NO and molecular oxygen (O(2)) and/or O(2)-derived species such as O(-)(2) and H(2)O(2). The yeast Saccharomyces cerevisiae represents a useful model system for evaluating the role of O(2) and O(2)-derived species in NO-mediated cytotoxicity. This study examines the contribution of O(2) and O(2)-derived species to NO-mediated cytotoxicity in the yeast S. cerevisiae. NO-mediated cytotoxicity was determined to be O(2)-dependent. However, this O(2) dependence was only minimally due to the generation of O(2)-derived species such as O(-)(2) and/or H(2)O(2).


Subject(s)
Nitric Oxide/toxicity , Oxygen/toxicity , Saccharomyces cerevisiae/drug effects , Hydrogen Peroxide/toxicity , Nitrates/toxicity , Saccharomyces cerevisiae/cytology
9.
Arch Biochem Biophys ; 377(2): 296-303, 2000 May 15.
Article in English | MEDLINE | ID: mdl-10845707

ABSTRACT

Previous studies indicate that nitric oxide (NO) can serve as a regulator/disrupter of metal-metabolizing systems in cells and, indeed, this function may represent an important physiological and/or pathophysiological role for NO. In order to address possible mechanisms of this aspect of NO biology, the effect of NO on copper metabolism and toxicity in the yeast Saccharomyces cerevisiae was examined. Exposure of S. cerevisiae to NO resulted in an alteration of the activity of the copper-responsive transcription factor Acel. Low concentrations of the NO donor DEA/NO were found to slightly enhance copper-mediated activation of Acel. Since Acel regulates the expression of genes responsible for the protection of S. cerevisiae from metal toxicity, the effect of NO on the toxicity of copper toward S. cerevisiae was also examined. Interestingly, low concentrations of NO were also found to protect S. cerevisiae against the toxicity of copper. The effect of NO at high concentrations was, however, opposite. High concentrations of DEA/NO inhibited copper-mediated Acel activity. Correspondingly, high concentrations of DEA/NO (1 mM) dramatically enhanced copper toxicity. An intermediate concentration of DEA/NO (0.5 mM) exhibited a dual effect, enhancing toxicity at lower copper concentrations (<0.5 mM) and protecting at higher (> or =0.5 mM) copper concentrations. Thus, it is proposed that the ability of NO to both protect against (at low concentrations) and enhance (at high concentration) copper toxicity in S. cerevisiae is, at least partially, a result of its effect on Acel. The results of this study have implications for the role of NO as a mediator of metal metabolism.


Subject(s)
Copper/metabolism , DNA-Binding Proteins/metabolism , Nitric Oxide/metabolism , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Copper/toxicity , Copper Sulfate/pharmacology , Dose-Response Relationship, Drug , Mutation , Nitric Oxide/physiology , Saccharomyces cerevisiae/genetics , Time Factors , Transcription, Genetic , Transformation, Genetic
10.
Proc Natl Acad Sci U S A ; 97(6): 2491-6, 2000 Mar 14.
Article in English | MEDLINE | ID: mdl-10694579

ABSTRACT

Nitric oxide (NO) was found to inhibit the copper-dependent induction of the yeast CUP1 gene. This effect is attributable to an inhibition of the copper-responsive CUP1 transcriptional activator Ace1. A mechanism is proposed whereby the metal binding thiols of Ace1 are chemically modified via NO- and O(2)-dependent chemistry, thereby diminishing the ability of Ace1 to bind and respond to copper. Moreover, it is proposed that demetallated Ace1 is proteolytically degraded in the cell, resulting in a prolonged inhibition of copper-dependent CUP1 induction. These findings indicate that NO may serve as a disrupter of yeast copper metabolism. More importantly, considering the similarity of Ace1 to other mammalian metal-binding proteins, this work lends support to the hypothesis that NO may regulate/disrupt metal homeostasis under both normal physiological and pathophysiological circumstances.


Subject(s)
DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Metals/metabolism , Nitric Oxide/metabolism , Saccharomyces cerevisiae Proteins , Sulfhydryl Compounds/metabolism , Transcription Factors/metabolism , Carrier Proteins , Dose-Response Relationship, Drug , Metallothionein/metabolism , Models, Chemical , Plasmids , Quaternary Ammonium Compounds/metabolism , Saccharomyces cerevisiae/metabolism , Time Factors , beta-Galactosidase/metabolism
11.
Proc Natl Acad Sci U S A ; 96(25): 14617-22, 1999 Dec 07.
Article in English | MEDLINE | ID: mdl-10588754

ABSTRACT

Recent experimental evidence suggests that reactive nitrogen oxide species can contribute significantly to postischemic myocardial injury. The aim of the present study was to evaluate the role of two reactive nitrogen oxide species, nitroxyl (NO(-)) and nitric oxide (NO(.)), in myocardial ischemia and reperfusion injury. Rabbits were subjected to 45 min of regional myocardial ischemia followed by 180 min of reperfusion. Vehicle (0.9% NaCl), 1 micromol/kg S-nitrosoglutathione (GSNO) (an NO(.) donor), or 3 micromol/kg Angeli's salt (AS) (a source of NO(-)) were given i.v. 5 min before reperfusion. Treatment with GSNO markedly attenuated reperfusion injury, as evidenced by improved cardiac function, decreased plasma creatine kinase activity, reduced necrotic size, and decreased myocardial myeloperoxidase activity. In contrast, the administration of AS at a hemodynamically equieffective dose not only failed to attenuate but, rather, aggravated reperfusion injury, indicated by an increased left ventricular end diastolic pressure, myocardial creatine kinase release and necrotic size. Decomposed AS was without effect. Co-administration of AS with ferricyanide, a one-electron oxidant that converts NO(-) to NO(.), completely blocked the injurious effects of AS and exerted significant cardioprotective effects similar to those of GSNO. These results demonstrate that, although NO(.) is protective, NO(-) increases the tissue damage that occurs during ischemia/reperfusion and suggest that formation of nitroxyl may contribute to postischemic myocardial injury.


Subject(s)
Myocardial Ischemia/physiopathology , Myocardial Reperfusion Injury/etiology , Nitric Oxide/physiology , Nitrogen Oxides/metabolism , Acetylcholine/pharmacology , Animals , Endothelium, Vascular/physiology , Glutathione/analogs & derivatives , Glutathione/pharmacology , Hemodynamics/drug effects , Male , Neutrophils/physiology , Nitrites/pharmacology , Nitroso Compounds/pharmacology , Oxidation-Reduction , Rabbits , S-Nitrosoglutathione
12.
Biochem Biophys Res Commun ; 262(2): 355-8, 1999 Aug 27.
Article in English | MEDLINE | ID: mdl-10462479

ABSTRACT

Ornithine decarboxylase (ODC) is the initial enzyme in the polyamine synthetic pathway, and polyamines are required for cell proliferation. We have shown previously that nitric oxide (NO) inhibits ODC activity in Caco-2 cells and in crude cell lysate preparations. In this study we examined the mechanism by which NO inhibits the activity of purified ODC. NO, in the form of S-nitrosocysteine (CysNO), S-nitrosoglutathione (GSNO), or 1, 1-diethyl-2-hydroxy-2-nitroso-hydrazine (DEA/NO), inhibited enzyme activity in a concentration-dependent manner. CysNO (1 microM) inhibited ODC activity by approximately 90% and 3 microM GSNO by more than 70%. DEA/NO was less potent, inhibiting enzyme activity by 70% at a concentration of 30 microM. Inhibition of enzyme activity by CysNO, GSNO, or DEA/NO was reversible by addition of dithiothreitol or glutathione. Cuprous ion (Cu (I)) also reversed the inhibitory effect of these NO donor agents. The data presented here support the hypothesis that NO inhibits ODC activity via S-nitrosylation of a critical cysteine residue(s) on ODC.


Subject(s)
Cysteine/analogs & derivatives , Nitric Oxide/pharmacology , Nitroso Compounds/metabolism , Ornithine Decarboxylase Inhibitors , Catalytic Domain , Copper/pharmacology , Ornithine Decarboxylase/drug effects , Oxidation-Reduction , Sulfhydryl Compounds
13.
Drug Metab Dispos ; 27(9): 1005-9, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10460799

ABSTRACT

Nitric oxide (NO) is both an endogenously generated species and the active species released from a variety of important drugs. Due to its endogenous generation and use as a therapeutic agent, the metabolism and fate of NO is of interest and concern. To date, most attention regarding the metabolism and fate of NO has been paid to its oxidized metabolites. Due to the reducing environment of cells, we considered that NO may also undergo reductive metabolism as well. Therefore, we have examined the reductive metabolism of NO by hepatocytes. Generation of nitrous oxide (N(2)O) was used as an indication of NO reduction. Indeed, we observed that NO could be reduced to N(2)O by the cytosolic fraction of hepatocytes. The N(2)O production was partially inhibited by the thiol modifying agent, N-ethylmaleimide and thiol consumption was observed during N(2)O formation. Thus, our results indicate that NO reduction is feasible and likely occurs via a thiol-dependent process.


Subject(s)
Liver/metabolism , Nitric Oxide/metabolism , Sulfhydryl Compounds/metabolism , Anaerobiosis , Animals , Cytosol/metabolism , Ethylmaleimide/pharmacology , Hydrogen-Ion Concentration , In Vitro Techniques , Liver/cytology , NADP/metabolism , Nitrous Oxide/metabolism , Oxidation-Reduction , Proteins/metabolism , Rats , Reducing Agents/pharmacology , Sulfhydryl Reagents/pharmacology
14.
Drug Metab Dispos ; 27(4): 502-9, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10232931

ABSTRACT

Organic nitrate esters, such as glyceryl trinitrate and isosorbide dinitrate, are a class of compounds used to treat a variety of vascular ailments. Their effectiveness relies on their ability to be bioactivated to nitric oxide (NO) which, in turn, relaxes vascular smooth muscle. Although there have been many biological studies that indicate that NO can be formed from organic nitrate esters in a biological environment, the chemical mechanism by which this occurs has yet to be established. Previous studies have implicated both flavins and thiols in organic nitrate ester bioactivation. Thus, we examined the chemical interactions of flavins and thiols with organic nitrate esters as a means of determining the role these species may play in NO production. Based on these studies we concluded that a reasonable chemical mechanism for organic nitrate ester bioactivation involves reduction to the organic nitrite ester followed by conversion to a nitrosothiol. The release of NO from nitrosothiols can occur via a variety of processes including reaction with dihydroflavins and NADH.


Subject(s)
Flavin Mononucleotide/chemistry , Nitrates/pharmacokinetics , Nitric Oxide Donors/pharmacokinetics , Biotransformation , Glutathione/analogs & derivatives , Glutathione/chemistry , Glutathione Disulfide/chemistry , Muscle, Smooth, Vascular/drug effects , NAD/chemistry , Nitrates/chemistry , Nitrates/pharmacology , Nitric Oxide/biosynthesis , Nitric Oxide/chemistry , Nitric Oxide Donors/chemistry , Nitrites/metabolism , Nitro Compounds/chemistry , Nitroglycerin/chemistry , Nitroglycerin/pharmacokinetics , Nitroglycerin/pharmacology , Nitroso Compounds/chemistry , Nitroso Compounds/pharmacokinetics , Nitrous Oxide/chemistry , Oxidation-Reduction , Sulfhydryl Compounds/chemistry , Vasodilation/drug effects
16.
Am J Physiol ; 275(4): R1256-64, 1998 10.
Article in English | MEDLINE | ID: mdl-9756558

ABSTRACT

The objective of this study was to elucidate the role and mechanism of nitric oxide (NO) synthase (NOS) in modulating the growth of the Caco-2 human colon carcinoma cell line. The two novel observations reported here are, first, that NG-hydroxy-L-arginine (NOHA) inhibits Caco-2 tumor cell proliferation, likely by inhibiting arginase activity, and, second, that NO causes cytostasis by mechanisms that might involve inhibition of ornithine decarboxylase (ODC) activity. Both arginase and ODC are enzymes involved in the conversion of arginine to polyamines required for cell proliferation. Cell growth was monitored by cell count, cell protein analysis, and DNA synthesis. NOHA (1-30 microM) and NO in the form of DETA/NO (1-30 microM) inhibited cell proliferation by 30-85%. The cytostatic effect of NOHA was prevented by addition of excess ornithine, putrescine, spermidine, or spermine to cell cultures, whereas the cytostatic effect of NO (DETA/NO) and alpha-difluoromethylornithine (ODC inhibitor) was unaffected by ornithine but was prevented by putrescine, spermidine, or spermine. The cytostatic effect of NOHA appeared to be independent of its conversion to NO, and the effect of NO appeared to be independent of cGMP. NOHA inhibited urea production by Caco-2 cells and inhibited arginase catalytic activity (85% at 3 microM), whereas NO (DEA/NO and SNAP) inhibited ODC activity (>/=60% at 30 microM) without affecting arginase activity. Coculture of Caco-2 cells with lipopolysaccharide/cytokine-activated rat aortic endothelial cells markedly slowed Caco-2 cell proliferation, and this was blocked by NOS inhibitors. These observations that NOHA and NO may inhibit sequential steps in the arginine-polyamine pathway suggest a novel biological role for NOS in the inhibition of cell proliferation of certain tumor cells and possibly other cell types.


Subject(s)
Arginase/metabolism , Arginine/analogs & derivatives , Cell Division/drug effects , Endothelium, Vascular/drug effects , Nitric Oxide/pharmacology , Polyamines/pharmacology , Animals , Aorta , Arginase/antagonists & inhibitors , Arginine/pharmacology , Caco-2 Cells , Coculture Techniques , DNA/biosynthesis , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Humans , Nitric Oxide Donors/pharmacology , Ornithine/pharmacology , Ornithine Decarboxylase/metabolism , Oxadiazoles/pharmacology , Putrescine/pharmacology , Quinoxalines/pharmacology , Rats , Spermidine/pharmacology , Spermine/pharmacology , Thymidine/metabolism , Triazenes/pharmacology , Urea/metabolism
17.
Biochemistry ; 37(16): 5362-71, 1998 Apr 21.
Article in English | MEDLINE | ID: mdl-9548918

ABSTRACT

S-Nitrosothiols have been implicated to play key roles in a variety of physiological processes. The potential physiological importance of S-nitrosothiols prompted us to examine their reaction with thiols. We find that S-nitrosothiols can react with thiols to generate nitroxyl (HNO) and the corresponding disulfide. Further reaction of HNO with the remaining S-nitrosothiol and thiol results in the generation of other species including NO, sulfinamide, and hydroxylamine. Mechanisms are proposed that rationalize the observed products.


Subject(s)
Nitrogen Oxides/metabolism , Nitroso Compounds/chemistry , Sulfhydryl Compounds/chemistry , Aerobiosis , Ammonia/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Free Radicals/chemistry , Free Radicals/metabolism , Glutathione/analogs & derivatives , Glutathione/chemistry , Nitric Oxide/chemistry , Nitrites/metabolism , Nitrogen Oxides/chemistry , Nitrous Oxide/metabolism , Oxidation-Reduction , S-Nitrosoglutathione
18.
J Biol Chem ; 271(11): 6144-51, 1996 Mar 15.
Article in English | MEDLINE | ID: mdl-8626402

ABSTRACT

The mechanism of cytotoxicity of the NO donor 3-morpholino-sydnonimine toward a human ovarian cancer cell line (OVCAR) was examined. It was found that the NO-mediated loss of cell viability was dependent on both NO and hydrogen peroxide (H2O2). Somewhat surprisingly, superoxide (O2) and its reaction product with NO, peroxynitrite (-OONO), did not appear to be di- rectly involved in the observed NO-mediated cytotoxicity against this cancer cell line. The toxicity of NO/H2O2 may be due to the production of a potent oxidant formed via a trace metal-, H202-, and NO-dependent process. Because the combination of NO and H2O2 was found to be particularly cytotoxic, the effect of NO on cellular defense mechanisms involving H2O2 degradation was investigated. It was found that NO was able to inhibit catalase activity but had no effect on the activity of the glutathione peroxidase (GSHPx)-glutathione reductase system. It might therefore be expected that cells that utilize primarily the GSHPx-glutathione reductase system for degrading H2O2 would be somewhat resistant to the cytotoxic effects of NO. Consistent with this idea, it was found that ebselen, a compound with GSHPx-like activity, was able to protect cells against NO toxicity. Also, lowering endogenous GSHPx activity via selenium depletion resulted in an increased susceptibility of the target cells to NO-mediated toxicity. Thus, a possible NO/H2O2/metal-mediated mechanism for cellular toxicity is presented as well as a possible explanation for cell resistance/susceptibility to this NO-initiated process.


Subject(s)
Cell Death/drug effects , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Nitric Oxide/pharmacology , Nitric Oxide/physiology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Azoles/pharmacology , Catalase , Cell Death/physiology , Drug Resistance , Female , Glutathione Peroxidase/metabolism , Humans , Hydrogen Peroxide/chemistry , Isoindoles , Macrophage Activation , Models, Biological , Molsidomine/analogs & derivatives , Molsidomine/pharmacology , Nitric Oxide/chemistry , Organoselenium Compounds/pharmacology , Selenium/metabolism , Superoxide Dismutase/pharmacology , Tumor Cells, Cultured
20.
Redox Rep ; 2(5): 309-16, 1996 Oct.
Article in English | MEDLINE | ID: mdl-27406411

ABSTRACT

Oxygen (O2)-dependent and O2-independent antimicrobial mechanisms are used by alveolar macrophages (AM) to maintain lung sterility, but these mechanisms are underdeveloped in neonatal AM. Nitric oxide (NO(.)), a more recently described antimicrobial and immunomodulating molecule, has not been studied in neonatal AM. Lavaged AM from 3-day-old, 10-day-old, maternal and adult rats were treated with or without lipopolysaccharide (LPS) and/or interferon-γ (IFN-γ) and NO(.) synthase activity was measured as its L-arginine metabolites: NO2(-), NO3(-), and citrulline. Superoxide anion (O2(.-)) production by suspended macrophages, initiated by either opsonized zymosan or phorbol, was used as a marker of O2-dependent antimicrobial activity. Lysozyme content of AM was measured as a component of O2-independent antimicrobial activity. Unstimulated 3-day-old macrophages generated >10-fold more NO2(-) + NO3(-) than did 10-day-old, maternal or adult AM. Twenty hours after LPS and IFN-γ stimulation, 3-day-old AM produced > 2 times more NO2(-) and NO3(-) than did the more mature macrophages. Basal and stimulated O2(.-) release was similar among 3-day-old, 10-day-old and adult AM, while lysozyme concentrations were > 4-fold higher in adult macrophages compared to AM from 3-day-old pups. Rather than having a role in NO(.)-dependent antimicrobial activity, we propose that newborn AM have amplified NO(.) production to modulate their own differentiation and replication after birth. The age-dependent differences in NO(.) synthase expression by AM may lend insight into the regulation of this important enzyme.

SELECTION OF CITATIONS
SEARCH DETAIL