Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Hear Res ; 450: 109070, 2024 09 01.
Article in English | MEDLINE | ID: mdl-38972084

ABSTRACT

Cholinergic signaling is essential to mediate the auditory prepulse inhibition (PPI), an operational measure of sensorimotor gating, that refers to the reduction of the acoustic startle reflex (ASR) when a low-intensity, non-startling acoustic stimulus (the prepulse) is presented just before the onset of the acoustic startle stimulus. The cochlear root neurons (CRNs) are the first cells of the ASR circuit to receive cholinergic inputs from non-olivocochlear neurons of the ventral nucleus of the trapezoid body (VNTB) and subsequently decrease their neuronal activity in response to auditory prepulses. Yet, the contribution of the VNTB-CRNs pathway to the mediation of PPI has not been fully elucidated. In this study, we used the immunotoxin anti-choline acetyltransferase (ChAT)-saporin as well as electrolytic lesions of the medial olivocochlear bundle to selectively eliminate cholinergic VNTB neurons, and then assessed the ASR and PPI paradigms. Retrograde track-tracing experiments were conducted to precisely determine the site of lesioning VNTB neurons projecting to the CRNs. Additionally, the effects of VNTB lesions and the integrity of the auditory pathway were evaluated via auditory brain responses tests, ChAT- and FOS-immunohistochemistry. Consequently, we established three experimental groups: 1) intact control rats (non-lesioned), 2) rats with bilateral lesions of the olivocochlear bundle (OCB-lesioned), and 3) rats with bilateral immunolesions affecting both the olivocochlear bundle and the VNTB (OCB/VNTB-lesioned). All experimental groups underwent ASR and PPI tests at several interstimulus intervals before the lesion and 7, 14, and 21 days after it. Our results show that the ASR amplitude remained unaffected both before and after the lesion across all experimental groups, suggesting that the VNTB does not contribute to the ASR. The%PPI increased across the time points of evaluation in the control and OCB-lesioned groups but not in the OCB/VNTB-lesioned group. At the ISI of 50 ms, the OCB-lesioned group exhibited a significant increase in%PPI (p < 0.01), which did not occur in the OCB/VNTB-lesioned group. Therefore, the ablation of cholinergic non-olivocochlear neurons in the OCB/VNTB-lesioned group suggests that these neurons contribute to the mediation of auditory PPI at the 50 ms ISI through their cholinergic projections to CRNs. Our study strongly reinforces the notion that auditory PPI encompasses a complex mechanism of top-down cholinergic modulation, effectively attenuating the ASR across different interstimulus intervals within multiple pathways.


Subject(s)
Acoustic Stimulation , Auditory Pathways , Prepulse Inhibition , Reflex, Startle , Trapezoid Body , Animals , Prepulse Inhibition/physiology , Male , Trapezoid Body/metabolism , Trapezoid Body/physiology , Auditory Pathways/physiology , Auditory Pathways/metabolism , Rats, Sprague-Dawley , Saporins/metabolism , Choline O-Acetyltransferase/metabolism , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Ribosome Inactivating Proteins, Type 1 , Evoked Potentials, Auditory, Brain Stem , Immunotoxins , Cochlear Nerve/metabolism , Cochlear Nerve/physiology , Rats
2.
Epilepsy Behav ; 71(Pt B): 226-237, 2017 06.
Article in English | MEDLINE | ID: mdl-26775236

ABSTRACT

Genetic animal models of epilepsy are an important tool for further understanding the basic cellular mechanisms underlying epileptogenesis and for developing novel antiepileptic drugs. We conducted a comparative study of gene expression in the inferior colliculus, a nucleus that triggers audiogenic seizures, using two animal models, the Wistar audiogenic rat (WAR) and the genetic audiogenic seizure hamster (GASH:Sal). For this purpose, both models were exposed to high intensity auditory stimulation, and 60min later, the inferior colliculi were collected. As controls, intact Wistar rats and Syrian hamsters were subjected to stimulation and tissue preparation protocols identical to those performed on the experimental animals. Ribonucleic acid was isolated, and microarray analysis comparing the stimulated Wistar and WAR rats showed that the genomic profile of these animals displayed significant (fold change, |FC|≥2.0 and p<0.05) upregulation of 38 genes and downregulation of 47 genes. Comparison of gene expression profiles between stimulated control hamsters and stimulated GASH:Sal revealed the upregulation of 10 genes and the downregulation of 5 genes. Among the common genes that were altered in both models, we identified the zinc finger immediate-early growth response gene Egr3. The Egr3 protein is a transcription factor that is induced by distinct stress-elicited factors. Based on immunohistochemistry, this protein was expressed in the cochlear nucleus complex, the inferior colliculus, and the hippocampus of both animal models as well as in lymphoma tumors of the GASH:Sal. Our results support that the overexpression of the Egr3 gene in both models might contribute to neuronal viability and development of lymphoma in response to stress associated with audiogenic seizures. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Subject(s)
Acoustic Stimulation/adverse effects , Early Growth Response Protein 1/genetics , Early Growth Response Protein 2/genetics , Early Growth Response Protein 3/genetics , Epilepsy, Reflex/genetics , Seizures/genetics , Animals , Cricetinae , Early Growth Response Protein 1/biosynthesis , Early Growth Response Protein 2/biosynthesis , Early Growth Response Protein 3/biosynthesis , Epilepsy, Reflex/drug therapy , Epilepsy, Reflex/metabolism , Gene Expression , Genes, Immediate-Early/genetics , Genetic Predisposition to Disease/genetics , Hippocampus/metabolism , Male , Mesocricetus , Rats , Rats, Wistar , Rodentia , Seizures/drug therapy , Seizures/metabolism , Species Specificity
3.
Behav Brain Res ; 242: 178-90, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23291154

ABSTRACT

In the present work we analyzed the effect of the chronic administration of risperidone (2mg/kg over 65 days) on behavioural, morphological and molecular aspects in an experimental model of schizophrenia obtained by bilateral injection of ibotenic acid into the ventral hippocampus of new-born rats. Our results show that during their adult lives the animals with hippocampal lesions exhibit different alterations, mainly at behavioural level and in the gene expression of dopamine D(2) and 5-HT(2A) receptors. However, at morphological level the study performed on the prefrontal cortex did not reveal any alterations in either the thickness or the number of cells immunoreactive for c-Fos, GFAP, CBP or PV. Overall, risperidone administration elicited a trend towards the recovery of the values previously altered by the hippocampal lesion, approaching the values seen in the animals without lesions. It may be concluded that the administration of risperidone in the schizophrenia model employed helps to improve the altered functions, with no significant negative effects.


Subject(s)
Antipsychotic Agents/administration & dosage , Behavior, Animal/drug effects , Brain/pathology , Gene Expression Regulation/drug effects , Risperidone/administration & dosage , Schizophrenia/drug therapy , Age Factors , Animals , Animals, Newborn , Avoidance Learning/drug effects , Avoidance Learning/physiology , Brain/metabolism , CREB-Binding Protein/metabolism , Cell Count , Disease Models, Animal , Drug Administration Schedule , Excitatory Amino Acid Agonists/toxicity , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Female , Glial Fibrillary Acidic Protein/metabolism , Grooming/drug effects , Hippocampus/drug effects , Hippocampus/physiology , Ibotenic Acid/toxicity , Male , Parvalbumins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Schizophrenia/chemically induced , Schizophrenia/physiopathology
4.
Neuroscience ; 179: 188-207, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21284951

ABSTRACT

Bushy cells (BCs) process auditory information in the ventral cochlear nucleus (VCN). Yet, most neuroanatomical findings come from studies in cats and rodents, and the ultrastructural morphological features of BCs in humans and higher nonhuman primates are unknown. In this study, we combined histological, immunocytochemical, and ultrastructural methods to examine the morphology and synaptic organization of BCs in the rhesus monkey VCN. We observed that BCs were organized in a complex neural network that appears to interconnect the cells. The fine structure of BC somata and dendrites, as well as their synaptic inputs, are similar to those in other mammals. We found that BCs received numerous endbulb-like VGLUT1- and VGLUT2-immunopositive endings. In addition, they expressed glutamate AMPA (GluR2/3 and GluR4), NMDA (NR1), delta1/2 receptor subunits, and the α1 subunit of the glycine receptor. These receptor types and subunits mediate fast excitatory synaptic transmission from the cochlea and inhibitory neurotransmission from noncochlear inputs. Parvalbumin immunostaining and semithin sections showed that BC dendrites are oriented toward neighboring BC somas to form neuronal clusters. Within the cluster, the incoming inputs established multiple, divergent synaptic contacts. Thus, BCs were connected by specialized dendrosomatic and somasomatic membrane junctions. Our results indicate that the cytoarchitectural organization of BCs is well conserved between primates and other mammalian species.


Subject(s)
Cochlear Nucleus/ultrastructure , Nerve Net/ultrastructure , Neurons/ultrastructure , Synapses/ultrastructure , Animals , Blotting, Western , Cochlear Nucleus/metabolism , Gap Junctions/ultrastructure , Immunohistochemistry , Macaca mulatta , Microscopy, Electron, Transmission , Nerve Net/metabolism , Neurons/metabolism , Receptors, Glutamate/biosynthesis , Receptors, Glycine/biosynthesis , Synapses/metabolism
5.
Neuroscience ; 154(1): 51-64, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18384963

ABSTRACT

Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha1 subunit (GlyRalpha1), GABAA, GABAB, and subunits of alpha2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyRalpha1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of noradrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR.


Subject(s)
Auditory Pathways/metabolism , Cochlear Nucleus/metabolism , Neurochemistry , 3,3'-Diaminobenzidine/metabolism , Animals , Cochlear Nucleus/cytology , Dendrites/metabolism , Gene Expression/physiology , Neurons/cytology , Neurons/metabolism , Rats , Rats, Wistar , Receptors, Adrenergic/metabolism , Receptors, GABA/classification , Receptors, GABA/metabolism , Receptors, Glutamate/classification , Receptors, Glutamate/metabolism , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Receptors, Muscarinic/classification , Receptors, Muscarinic/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL