Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters








Publication year range
1.
J Parasitol Res ; 2024: 9952738, 2024.
Article in English | MEDLINE | ID: mdl-39296814

ABSTRACT

Bacillus thuringiensis (B. thuringiensis) is considered one of the most important entomopathogenic microorganisms. It produces potent toxins against insects. Therefore, the present study investigates the bioacaricidal properties of B. thuringiensis on the Hyalomma tick species. Firstly, we identify Hyalomma ticks based on morphological screening and molecular characterization. The cytochrome C oxidase subunit I (COX1) gene was selected for the polymerase chain reaction (PCR) analysis, which resulted in the amplification of 656 bp. The amplified products were sequenced, and the isolated (COX1) gene of ticks was submitted to the gene bank of NCBI (Accession No. OR077934.1). The nucleotide sequences were retrieved from the NCBI data bank by BLASTn analysis, which confirmed that all obtained sequences belong to genus Hyalomma, and multiple alignments confirmed that the sequence of Hyalomma anatolicum Tandojam-isolate (HA-TJ) 100% aligned with Hyalomma analoticum KP792577.1, Hyalomma detritum KP792595.1, Hyalomma excavatum KX911989.1, and H. excavatum OQ449693.1. The generated phylogenetic tree confirmed that sequences of HA-TJ COX1 clustered with a single clad of H. analoticum, H. excavatum, and H. detritum. The acaricidal effect of B. thuringiensis toxins B. thuringiensis spore crystal mix (BtSCM) and B. thuringiensis crystal proteins (Btcps) was evaluated against larvae and adult life stages of Hyalomma ticks in vitro. We applied Btcps and BtSCM separately with different concentrations and calculated the mortality percentage. Adult mortality was estimated at the 8th, 10th, 12th, and 15th days posttreatment and larval mortality after 24 h. During treatment of the adult life stage, at first, ticks were immersed in different concentrations of Btcps and BtSCM for 5 min after the treatments, and the samples were transferred to sterile containers and placed in an incubator with 80% humidity at 23°C. Furthermore, Btcps produced the highest mortality on Day 15, 89 ± 1.00% at a concentration of 3000 µg/mL, followed by the 12th, 10th, and 8th days produced 83 ± 1.91%, 70 ± 1.15%, and 61 ± 1.00%, respectively. BtSCM produced mortality of 69 ± 1.91% on Day 15 at a concentration of 3000 µg/mL, followed by the 12th, 10th, and 8th days at 57 ± 2.51%, 37 ± 1.91%, and 34 ± 2.00%. The present study revealed that B. thuringiensis toxins produced a significant (p < 0.05) increase in mortality rate in adults of Hyalomma ticks. Additionally, Btcps and BtSCM were used to treat the larval stage. The treatments were applied to calculate the mortality percentage via the Laravel packet test. At a 1500 µg/mL concentration, Btcps resulted in the highest mortality of 98 ± 1.15%; this was followed by 1250 µg/mL, 1000 µg/mL, and 750 µg/mL, which produced mortalities of 76 ± 1.63%, 60 ± 1.63%, and 56 ± 1.63%, respectively. In addition, BtSCM produced a mortality rate of 79 ± 2.51% at a concentration of 1500 µg/mL. Furthermore, 75 ± 2.51%, 65 ± 1.91%, and 58 ± 1.15% mortality were observed at concentrations of 1250 µg/mL, 1000 µg/mL, and 750 µg/mL, respectively. The results showed a significant (p < 0.05) increase in larval mortality compared to the control group. We conclude that B. thuringiensis toxins are applicable as a bioacaricide.

2.
Heliyon ; 9(6): e17172, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37441378

ABSTRACT

Babesiosis is a protozoal disease affect livestock and pet animals such as cattle, buffaloes, sheep, goats, horses, donkeys, mules, dogs, and cats. It causes severe economic losses in livestock as well as in pet animals. A large number of dairy animals are imported in order to fulfill the demands of milk, milk, meat and its products. In addition, different pet animals are transported from Pakistan to various parts of the world, therefore, it is important to identify the current status and distribution of babesiosis throughout Pakistan in order to control the disease and draw attention for future research, diagnosis, treatment and control of this diseases. No work has been done on a complete review on up-to-date on blood protozoal disease burden in Pakistan. This article will provide about the complete background of babesiosis in ruminants, equines and pet animals, its current status, distribution, vectors in Pakistan and allopathic and ethnoveterinary treatments used against babesiosis. Babesiosis may be subclinical (apparently normal) and may be clinical with acute to chronic disease and sometimes fatal. Babesia is found and develops inside the erythrocytes (red blood cells). Clinically, it causes fever, fatigue, lethargy, pallor mucus membranes, malaise, cachexia, respiratory distress, jaundice, icterus, hemolytic anemia, hemoglobinuria, lymphadenopathy, chollangocytitis, hepatomegaly, and splenomegaly. Chemotherapy for babesiosis includes Imidocarb dipropionate, Diaminazine aceturate Atovaquone and Bupravaquone, Azithromycin, Quinuronium sulfate and Amicarbalidesio-thionate are most widely used. Supportive therapy includes multivitamins, fluid therapy, antipyretics intravenous fluids, and blood transfusions are used if necessary. In addition, there are certain ethnoveterinary (homeopathic) ingredients which having anti-babesial activity. As the resistance against these drugs is developing every day. New more specific long-lasting drugs should be developed for the treatment of Babesiosis. Further studies should be done on disease genome of different species of Babesia for vaccine development like malarial parasites.

3.
Exp Parasitol ; 250: 108533, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37072106

ABSTRACT

Haemonchus contortus (H. contortus) has developed resistance to nearly all available anthelmintic medications. Hence, alternative strategies are required to counter anthelmintic resistance. The present study investigated the anthelmintic potential of Bacillus thuringiensis (B. thuringiensis) against H. contortus. Bacterial spp were identified by conventional methods and confirmed by PCR; In addition, PCR amplification of the bacterial 16S rRNA gene detected B. thuringiensis at 750 base pairs (bps). The amplified products were sequenced, and the sequence data were confirmed using the Basic Local Alignment Tool (BLAST), which showed a significant alignment (97.98%) with B. thuringiensis and B. cereus. B. thuringiensis were selected to isolate purified crystal proteins (toxins), The protein profile confirmed by SDS-PAGE showed three prominent bands at 70, 36, and 15 kDa. In addition, the larval development of H. contortus was examined in vitro using two different treatments. Purified crystal protein diluted in 10 mM NaCl at a concentration of 2 mg/ml significantly reduced (P < 0.001) larval development by 75.10% compared to 1 × 108 CFU/ml spore-crystal suspension reduced (43.97%). The findings of in vitro experiments indicated that purified crystal protein was more toxic to the H. contortus larva than the spore-crystal suspension and control group. Moreover, To test the antinematodal effects of B. thuringiensis toxins in vivo, we chose 12 male goats (6 months old) and reared these animals in parasite-free conditions. We performed Fecal egg count reduction tests (FECRT) on samples collected before and after treatment at various times denotes 48 h post-treatment with Purified crystal proteins was significantly decreased (842 ± 19.07) EPG compared to 24 (2560 ± 233.66) and 12 h (4020 ± 165.22). Similarly, after 48 h of treatment, the FECRT of the Spores-crystal mix was reduced (2920 ± 177.20) EPG followed by 24- and 12-h denotes (4500 ± 137.84) and (4760 ± 112.24), respectively. Results of the above experiment suggested that purified crystal proteins have more anthelmintic potential in vivo. Current findings determine that B. thuringiensis toxin against H. contortus could be used in small ruminants to counter anthelmintic resistance. This study also suggested that future research structured on these proteins' pharmacokinetics and mode of action.


Subject(s)
Anthelmintics , Bacillus thuringiensis , Haemonchiasis , Haemonchus , Sheep Diseases , Animals , Male , Sheep/genetics , RNA, Ribosomal, 16S , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anthelmintics/metabolism , Bacterial Proteins/analysis , Haemonchiasis/drug therapy , Haemonchiasis/veterinary , Sheep Diseases/drug therapy , Parasite Egg Count/veterinary
4.
Biol Trace Elem Res ; 201(4): 1977-1986, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35676590

ABSTRACT

In this study, 336-day-old corn cob broilers were bought for the poultry experimental station during the months of May and June 2021. Before the arrival of chicks, the brooders, chick feeders, drinkers, humidity, temperature, and feeding management were controlled according to scientific patterns. These birds were randomly divided into seven groups and six replications of eight birds, viz. Group-A (positive control on basal diet only), Group-B (negative control on basal diet and HS), group-C (basal diet + simple Se 0.3 mg/kg feed), Group-D (basal diet + SeNP 0.3 mg/kg feed + HS), Group-E (BD + HS + chitosan), Group-F (BD + Se + COS), and Group-G (nano Se with chitosan 0.3 mg/kg + BD + HS). On the 42nd day of research, two birds were selected from each replication and sacrificed after blood collection. The initial data related to feeding intake, live body weight, and feed conversion ratio (FCR) were collected before slaughter. The intestinal samples were collected and immediately transferred to formalin after grass morphometry. The live body weight, FCR, feed intake, intestinal histomorphology, relative organ weight, and antioxidant parameters like MDA, SOD, and GPX were significant (P > 0.005) in all groups, with Group-G at the highest, followed by Groups-F, E, D, C, A, and B. Group-B (negative control group) was the most affected group in all aspects because of heat stress and only basal diet. It was concluded that heat stress highly causes a loss in performance, intestinal gross morphology, and histology in poultry, and increases stress conditions, whereas the selenium nanoparticle works to improve the body weight, FCR, and intestinal parameters.


Subject(s)
Chitosan , Selenium , Animals , Animal Feed , Antioxidants , Body Weight , Chickens , Chitosan/pharmacology , Diet/veterinary , Dietary Supplements , Heat-Shock Response , Selenium/pharmacology
5.
J Appl Microbiol ; 132(4): 3181-3188, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34820970

ABSTRACT

AIM: This study aimed to determine the potential prophylactic efficacy of probiotic individually and/or in combination with anti-coccidial drug on the performance and immunity of broilers under an induced coccidial infection over a 28-day of experimental trial. METHODS: One hundred and eighty 1-day-old Cobb broiler chicks were randomly divided into five groups, included control group (CG), control positive group (CPG), probiotic-treated group (Prob), diclazuril-treated group (Dic), and probiotic + diclazuril-treated group (Prob + Dic). On day 21 of age, all birds, except group CG, were orally inoculated with 1 ml of tap water containing 25,000 Eimeria tenella sporulated oocysts. RESULTS: Our results showed that the probiotic treatment did not influence pre-challenge body weight, feed intake and feed conversion ratio (FCR). During the post-challenge period, chickens in groups probiotic and diclazuril individually and in combination exhibited higher body weight and lower (better) FCR, reduced oocyst shedding (throughout the day four, five, six and seven post-infection), cecal lesions and mortality compared with control positive chickens. Moreover, Compared to CPG group, Prob + Dic group showed increased (p < 0.05) serum levels of interleukin-10 (IL-10) and immunoglobulin M (IgM) and decreased the concentrations of interferon gamma (IFN-γ). On the other hand, individual treatment with probiotic exhibited highest serum levels of IL-10 and IgM, while diclazuril alone increased the blood concentrations of IL-10 and decreased the levels of IFN-γ compared to control positive group; however, there was no significant effect of Prob on IFN-γ, Dic on IgM and all groups on interleukin-17. CONCLUSION: In conclusion, supplementation of probiotic, with and/or without anti-coccidial drug, enhances immunity and inhibits the negative effects of Eimeria infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reveals the anti-coccidial mechanisms of probiotic in the presence and absence of anti-coccidial drug in preventing the coccidia infection.


Subject(s)
Coccidiosis , Eimeria , Poultry Diseases , Probiotics , Animal Feed , Animals , Chickens , Coccidiosis/drug therapy , Coccidiosis/prevention & control , Coccidiosis/veterinary , Diet/veterinary , Nitriles , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Triazines
6.
Res Vet Sci ; 136: 247-258, 2021 May.
Article in English | MEDLINE | ID: mdl-33721712

ABSTRACT

Previously, it was found that several proteins of Haemonchus contortus were involved in the stimulation of the host immune system. However, the information about the selection of superlative antigens with immunogenic efficacies on host DCs is lacking. In the current study, the stimulatory effects of five recombinant proteins (elongation factor-1α, arginine kinase, ES-15, ES-24, and ADP-ribosylation factor 1) of H. contortus on the maturation of goat monocyte-derived dendritic cells (md-DCs) were reported. Recombinant proteins were purified separately in E. coli expression and incubated with isolated goat peripheral blood mononuclear cells (PBMC). Immunofluorescence assay (IFA) results confirmed the binding of these molecules to the md-DC's surface as compared to control groups. In the flow cytometry analysis, recombinant proteins induced md-DC stimulation via the up-regulation of the expression of the costimulatory molecule (CD80) and MHC-II. Quantitative RT-PCR data showed a significant increase in the expression of specific genes of the WNT and toll-like receptor (TLR) signaling pathways. The result of ELISA indicated the higher levels of cytokine (IL-10, IL-12, IFN-γ, and TNF-α) secretion in the md-DC compared to the negative (pET-32a His-Tag) and blank (PBS) control groups. The data gives valuable support in the selection of potential antigens for future studies on the immunomodulation of the host against the infection of H. contortus.


Subject(s)
Antigens, Helminth/immunology , Dendritic Cells/immunology , Goats/immunology , Haemonchus/immunology , Toll-Like Receptors/genetics , Up-Regulation , Animals , Monocytes/immunology , Toll-Like Receptors/metabolism
7.
Vaccines (Basel) ; 8(4)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276581

ABSTRACT

ADP-ribosylation factor 1 (HcARF1) is one of the Haemonchus contortus (H. contortus) excretory/secretory proteins involved in modulating the immune response of goat peripheral blood mononuclear cells (PBMC). Here, we evaluated the immunogenic potential of recombinant HcARF1 (rHcARF1) against H. contortus infection in Institute of Cancer Research (ICR) mice. Briefly, rHcARF1 was entrapped in poly (D, L-lactide-co-glycolide) (PLGA) and chitosan (CS) nanoparticles (NP) and injected into mice as a vaccine. Fifty-six ICR mice were assigned randomly into seven groups, with eight animals in each group, and they were vaccinated subcutaneously. At the end of the experiment (14th day), the blood and the spleen were collected from euthanized mice to detect lymphocyte proliferation, cytokine analysis, and the production of antigen-specific antibodies. Scanning electron microscope was used to determine the size, morphology, and zeta potential of nanoparticles. Flow cytometry was performed, which presented the increase percentages of CD4+ T cells (CD3e+CD4+), CD8+ T cells (CD3e+CD8+) and dendritic cells (CD11c+CD83+, CD11c+CD86+) in mice vaccinated with rHcARF1+PLGA NP. Immunoassay analysis show raised humoral (Immunoglobulin (Ig)G1, IgG2a, IgM) and cell-mediated immune response (Interleukin (IL)-4, IL-12, and IL-17, and Interferon (IFN)-γ) induced by rHcARF1+PLGA NP. Experimental groups that were treated with the antigen-loaded NP yield higher lymphocyte proliferation than the control groups. Based on these results, we could propose that the rHcARF1 encapsulated in NP could stimulate a strong immune response in mice rather than administering alone against the infection of H. contortus.

8.
BMC Vet Res ; 16(1): 462, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33246474

ABSTRACT

BACKGROUND: High concentrate (HC) diet-induced oxidative stress causes gut epithelial damages associated with apoptosis. Selenium (Se) being an integral component of glutathione peroxidase (GSH-Px) plays an important role in antioxidant defense system. Therefore, increasing dietary Se level would alleviate HC diet-induced injuries in gut mucosa. The present study investigated eighteen cross-bred goats, randomly divided into three groups (n = 6/group) fed either low concentrate (LC, roughage: concentrate ratio 65:35), high concentrate (HC, 35:65) or HC plus Se (HC-SY) diets for 10 weeks. Se was supplemented at the dose rate of 0.5 mg Se kg- 1 diet in the form of selenium yeast. The background Se level in HC and LC diets were 0.15 and 0.035 mg.kg- 1 diet, respectively. The Se at the dose of 0.115 mg.kg- 1 diet was added in LC diet to make its concentration equivalent to HC diet and with the supplementation of 0.5 mg Se kg- 1, the goats in group HC-SY received total Se by 0.65 mg.kg- 1 diet. RESULTS: The molar concentrations of individual and total short chain fatty acids (TSCFA) significantly increased (P < 0.05) with simultaneous decrease in pH of colonic fluid in goats of HC and HC-SY groups compared with LC goats. HC diet induced loss of epithelial integrity, inflammation and loss of goblet cells in colonic mucosa associated with higher lipopolysaccharide (LPS) concentrations in colonic fluid whereas, the addition of SY in HC diet alleviated such damaging changes. Compared with LC, the HC diet elevated malondialdehyde (MDA) level with concurrent decrease in GSH-Px and superoxide dismutase (SOD) activities, while SY supplementation attenuated these changes and improved antioxidant status in colonic epithelium. Moreover, epithelial injury and oxidative stress in colon of HC goats were associated with increased apoptosis as evidenced by downregulation of bcl2 and upregulation of bax, caspases 3 and 8 mRNA expressions compared with LC goats. On contrary, addition of SY in HC (HC-SY) diet alleviated these changes by modulating expression of apoptotic genes in colonic epithelium. CONCLUSIONS: Our data suggest that supranutritional level of Se attenuates HC diet-induced oxidative stress and apoptosis and thereby minimizes the epithelial injury in colon of goats.


Subject(s)
Animal Feed/adverse effects , Goats/physiology , Selenium/administration & dosage , Animal Feed/analysis , Animals , Apoptosis/drug effects , Colon/drug effects , Diet/veterinary , Fatty Acids, Volatile/metabolism , Female , Intestinal Mucosa/drug effects , Malondialdehyde/metabolism , Oxidative Stress/drug effects
9.
Pathogens ; 9(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120801

ABSTRACT

Small size excretory/secretory (ES) antigens of the Haemonchus contortus parasite have intense interest among researchers for understanding the molecular basis of helminths immune regulation in term of control strategies. Immunomodulatory roles of H. contortus ES-15 kDa (HcES-15) on host immune cells during host-parasite interactions are unknown. In this study, the HcES-15 gene was cloned and expression of recombinant protein (rHcES-15) was induced by isopropyl-ß-D-thiogalactopyranoside (IPTG). Binding activity of rHcES-15 to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immunofluorescence assay (IFA) and immunohistochemical analysis showed that H. contortus 15 kDa protein localized in the outer and inner structure of the adult worm, clearly indicated as the parasite's ES antigen. The immunoregulatory role on cytokines production, cell proliferation, cell migration, nitric oxide (NO) production, apoptosis, and phagocytosis were observed by co-incubation of rHcES-15 with goat PBMCs. The results showed that cytokines IL-4, IL-10, IL-17, the production of nitric oxide (NO), PBMCs apoptosis, and monocytes phagocytosis were all elevated after cells incubated with rHcES-15 at differential protein concentrations. We also found that IFN-γ, TGF-ß1, cells proliferation and migration were significantly suppressed with the interaction of rHcES-15 protein. Our findings indicated that low molecular ES antigens of H. contortus possessed discrete immunoregulatory roles, which will help to understand the mechanisms involved in immune evasion by the parasite during host-parasite interactions.

10.
Parasite Immunol ; 42(5): e12703, 2020 05.
Article in English | MEDLINE | ID: mdl-32043596

ABSTRACT

Excretory/secretory proteins of Haemonchus contortus (HcESPs) intermingle comprehensively with host immune cells and modulate host immune responses. In this study, H contortus ES antigen named as elongation factor 1 alpha (HcEF-1α) was cloned and expressed. The influences of recombinant HcEF-1α on multiple functions of goat peripheral blood mononuclear cells (PBMCs) were observed in vitro. Immunoblot analysis revealed that rHcEF-1α was recognized by the serum of goat infected with H contortus. Immunofluorescence analysis indicated that rHcEF-1α was bound on surface of PBMCs. Moreover, the productions of IL-4, TGF-ß1, IFN-γ and IL-17 of cells were significantly modulated by the incubation with rHcEF-1α. The production of interleukin IL-10 was decreased. Cell migration, cell proliferation and cell apoptosis were significantly increased; however, nitric oxide production (NO) was significantly decreased. The MHC II molecule expression of cells incubated with rHcEF-1α was increased significantly, whereas MHC-I was not changed as compared to the control groups (PBS control and pET32a). These findings indicated that rHcEF-1α protein might play essential roles in functional regulations of HcESPs on goat PBMC and mediate the immune responses of the host during host-parasite relationship.


Subject(s)
Goat Diseases/parasitology , Haemonchiasis/veterinary , Haemonchus/immunology , Helminth Proteins/immunology , Leukocytes, Mononuclear/immunology , Peptide Elongation Factor 1/immunology , Animals , Apoptosis , Cell Movement , Cell Proliferation , Goat Diseases/genetics , Goat Diseases/immunology , Goat Diseases/physiopathology , Goats , Haemonchiasis/immunology , Haemonchiasis/parasitology , Haemonchiasis/physiopathology , Haemonchus/genetics , Helminth Proteins/genetics , Interleukin-17/genetics , Interleukin-17/immunology , Nitric Oxide/immunology , Peptide Elongation Factor 1/genetics
11.
Biomolecules ; 10(1)2020 01 09.
Article in English | MEDLINE | ID: mdl-31936604

ABSTRACT

Galectins are glycan-binding proteins that are widely expressed and distributed in mammalian tissues as well as cells of innate and adaptive immune responses. CD4+ T-helper cells differentiate into effector subsets in response to cytokines. T helper 9 cells are one of the recently described subsets of effector T cells that are relatively new and less studied. In this study, galectin domain containing protein from Haemonchus contortus (Hc-GDC) was cloned, expressed in pET32a, and immunoblotting was performed. Localization of recombinant (r)Hc-GDC on outer and inner surface of H. contortus worm and binding with goat Peripheral Blood Mononuclear cells (PBMCs) were performed using immunofluorescence assay. Moreover, effects of rHc-GDC on proliferation, apoptosis, cell migration, and the nitric oxide production in goat PBMCs were evaluated. Furthermore, modulatory effects of rHc-GDC on production of Th1, Th2, and Th9 cells were evaluated by flowcytometry and on interferon gamma, interleukin (IL)-4 and IL-9 were evaluated by quantitative real-time polymerase chain reaction. The results demonstrated that rHc-GDC was successfully cloned, expressed in expression vector as well as in the gut surface of adult H. contortus worm and successful binding with PBMCs surface were observed. Immunoblotting results revealed that rHc-GDC is an important active protein of H. contortus excretory and secretory products. Moreover, the interaction of rHc-GDC with host cells increased the production of Th2, Th9 cells, IL4, IL-9, PBMC proliferation, nitric oxide, and cell migration. No effects of rHc-GDC were observed on PMBC apoptosis, production of Th1 cells, and secretions of IFN- and IL-10 cytokines. These findings indicate that recombinant GDC protein from H. contortus modulates the immune functions of goat PBMCs and has the potential to enhance protective immunity by inducing T helper-9-derived IL-9 in vitro.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Goats/immunology , Haemonchiasis/veterinary , Haemonchus/immunology , Helminth Proteins/immunology , Lectins/immunology , Leukocytes, Mononuclear/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/parasitology , Cell Movement , Cell Proliferation , Cells, Cultured , Female , Goats/parasitology , Haemonchiasis/immunology , Haemonchiasis/parasitology , Host-Parasite Interactions , Leukocytes, Mononuclear/parasitology , Nitric Oxide/immunology , Rats, Sprague-Dawley , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/parasitology
12.
Front Immunol ; 9: 1627, 2018.
Article in English | MEDLINE | ID: mdl-30061894

ABSTRACT

Serine/threonine-protein phosphatases (STPs), as integral constituents of parasitic excretory/secretory proteins, are assumed to be released during the host-parasite interactions. However, knowledge about these phosphatases and their immunoregulatory and immune protective efficiencies with host peripheral blood mononuclear cells (PBMCs) is scant. In this study, an open reading frame of STP from Haemonchus contortus designated as HcSTP-1 was amplified and cloned using reverse-transcription-polymerase chain reaction (RT-PCR) method. The 951-bp nucleotides sequence was encoded to a protein of 316 amino acid residues, conserved in characteristics motifs GDXHG, GDYVDRG, GNHE, HGG, RG, and H. The HcSTP-1 protein was detected at approximately 35 kDa as recombinant protein fused in an expression vector system and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunohistochemically, HcSTP-1 was found to be localized in both male and female adult worm sections. Using immunofluorescence assay, the binding activity of rHcSTP-1 was confirmed on surface of goat PBMCs, which resulted in expression of multiple cytokines and various immunoregulatory activities in vitro. The RT-PCR results showed that mRNA level of interleukin-2, TGF-ß1, IFN-γ, and IL-17 (with 10 µg/ml) was upregulated and IL-10 was decreased. However, IL-6 showed no change after PBMCs incubated with rHcSTP-1 protein. Further functional analysis showed that migratory activity of cells, intracellular nitrite production (NO), and apoptotic efficiency of PBMCs were elevated at significant level, whereas the proliferation of goat PBMCs and monocytes-associated major histocompatibility complex (MHC)-I and MHC-II expressions were decreased significantly at concentration-dependent fashion. Our results showed that the HcSTP-1 protein engaged in vital suppressive regulatory roles on host immune cells, which might represent a potential molecular target for controlling H. contortus infection in future.

13.
Oncotarget ; 8(51): 88351-88359, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29179440

ABSTRACT

Excretory/secretory antigens (ESAs) produced by Toxoplasma gondii enable this parasite to invade and survive within the host cells through immunomodulation. In this study, the modulating effects of T. gondii excretory/secretory antigens (TgESAs) on the Ana-1 murine macrophage cell line were evaluated. Ana-1 cells were incubated with several concentrations of TgESAs, and the resulting effects on cellular viability, phagocytotic ability, and apoptosis induction were determined. Pro-inflammatory and anti-inflammatory cytokine secretion, nitric oxide production, toll-like receptor expression, and nuclear translocation of NF-κB were all measured after incubation with TgESAs. After TgESAs treatment, the proliferation and phagocytosis ability of Ana-1 cells decreased, and apoptosis was induced in a dose dependent manner. Analysis of Ana-1 cell culture supernatants showed that TgESAs not only upregulated secretion of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß1), they also inhibited secretion of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß). Additionally, TgESAs inhibited nitric oxide production, toll-like receptor (TLR) 2 and 4 activation, and the nuclear translocation of NF-κB in lipopolysaccharide-stimulated Ana-1 macrophages. These results suggest TgESAs inhibit the functional activity of Ana-1 murine macrophages by inhibiting TLR-induced NF-κB activation, which suppresses pro-inflammatory cytokine secretion.

14.
Parasit Vectors ; 10(1): 311, 2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28651566

ABSTRACT

BACKGROUND: Arginine kinase (AK), an important member of phosphagen kinase family has been extensively studied in various vertebrates and invertebrates. Immunologically, AKs are important constituents of different body parts, involved in various biological and cellular functions, and considered as immune-modulator and effector for pro-inflammatory cytokines. However, immunoregulatory changes of host cells triggered by AK protein of Haemonchus contortus, a parasitic nematode of ruminants, are still unknown. The current study was focused on cloning and characterisation of Hc-AK, and its regulatory effects on cytokines level, cell migration, cell proliferation, nitric oxide production and apoptosis of goat peripheral blood mononuclear cells (PBMCs) were observed. METHODS: The full-length sequence of the Hc-AK gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sub-cloned into the prokaryotic expression vector pET-32a. The biochemical characteristics of recombinant protein Hc-AK, which was purified by affinity chromatography, were performed based on the enzymatic assay. Binding of rHc-AK with PBMCs was confirmed by immunofluorescence assay (IFA). Immunohistochemical analysis was used to detect localisation of Hc-AK within adult worms sections. The immunoregulatory effects of rHc-AK on cytokine secretions, cell proliferation, cell migration, nitric oxide production and apoptosis were determined by co-incubation of rHc-AK with goat PBMCs. RESULTS: The full-length ORF (1080 bp) of the Hc-AK gene was successfully cloned, and His-tagged AK protein was expressed in the Escherichia coli strain BL21. The recombinant protein of Hc-AK (rHc-AK) was about 58.5 kDa together with the fused vector protein of 18 kDa. The biochemical assay showed that the protein encoded by the Hc-ak exhibited enzymatic activity. Western blot analysis confirmed that the rHc-AK was recognised by the sera from rat (rat-antiHc-AK). The IFA results showed that rHc-AK could bind on the surface of goat PBMCs. Immunohistochemically, Hc-AK was localised at the inner and outer membrane as well as in the gut region of adult worms. The binding of rHc-AK to host cells increased the levels of IL-4, IL-10, IL-17, IFN-γ, nitric oxide (NO) production and cell apoptosis of goat PBMCs, whereas, TGF-ß1 levels, cell proliferation and PBMCs migration were significantly decreased in a dose dependent manner. CONCLUSIONS: Our findings suggested that rHc-AK is an important excretory and secretory (ES) protein involved in host immune responses and exhibit distinct immunomodulatory properties during interaction with goat PBMCs.


Subject(s)
Apoptosis , Arginine Kinase/metabolism , Haemonchus/enzymology , Leukocytes, Mononuclear/cytology , Animals , Antibodies, Helminth/biosynthesis , Arginine Kinase/genetics , Arginine Kinase/immunology , Arginine Kinase/isolation & purification , Blotting, Western , Cell Migration Assays , Cell Proliferation , Cloning, Molecular , Computational Biology , Cytokines/blood , Cytokines/metabolism , Female , Gene Expression , Goats , Haemonchus/classification , Haemonchus/genetics , Haemonchus/immunology , Immunohistochemistry , Leukocytes, Mononuclear/metabolism , Male , Nitric Oxide/metabolism , Phylogeny , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis , Specific Pathogen-Free Organisms
15.
Parasit Vectors ; 10(1): 191, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28420411

ABSTRACT

BACKGROUND: Aspartyl protease inhibitor (API) was thought to protect intestinal parasitic nematodes from their hostile proteolytic environment. Studies on Ostertagia ostertagi, Ascaris suum and Brugia malayi indicated that aspins might play roles in nematode infection. In a recent study, proteins differentially expressed between free-living third-stage larvae (L3) and activated L3 (xL3) of Haemonchus contortus were identified by 2D-DIGE. API was found downregulated in xL3 when compared with L3. However, there was no report about the functions of H. contortus API in the parasite-host interaction. In this study, the gene encoding API from H. contortus was cloned, expressed, and part of its biological characteristics were studied. RESULTS: A DNA fragment of 681 bp was amplified by RT-PCR. Ninety one percent of the amino acid sequence was similar with that for aspin from O. ostertagi. The recombinant API protein was fusion-expressed with a molecular weight of 48 × 103. Results of Western blot showed that the recombinant API could be recognized by serum from goat infected with H. contortus. It was found that API was localized exclusively in the subcutaneous tissue and epithelial cells of the gastrointestinal tract in adult H. contortus. qRT-PCR suggested that the API gene was differentially transcribed in different life-cycle stages, with the lowest level in female adults and the highest in free-living L3 larvae. Enzyme inhibition assay indicated that the recombinant API can inhibit the activity of pepsin significantly, and the optimal reaction pH and temperature were 4.0 and 37-50 °C respectively. In vitro study showed that the recombinant API could induce goat PBMCs to express IFN-γ, IL-4 and IL-10. CONCLUSIONS: A new aspartyl protease inhibitor was cloned from H. contortus and its characteristics were studied for the first time. The results indicate that API may regulate the immune response of the host and play roles in the infection.


Subject(s)
Aspartic Acid Proteases/antagonists & inhibitors , Haemonchus/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , Animals , Aspartic Acid Proteases/genetics , Aspartic Acid Proteases/metabolism , Cloning, Molecular , Cytokines/biosynthesis , Female , Goats/immunology , Goats/parasitology , Haemonchiasis/immunology , Haemonchiasis/veterinary , Haemonchus/genetics , Haemonchus/physiology , Host-Parasite Interactions , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Life Cycle Stages , Male , Pepsin A/antagonists & inhibitors , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Real-Time Polymerase Chain Reaction , Recombinant Proteins/pharmacology
16.
Oncotarget ; 8(68): 112211-112221, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29348819

ABSTRACT

ADP-ribosylation factors (ARFs) are members of the Ras-related small GTPase family involved in the vesicular trafficking regulation. Immunomodulatory effects of these proteinson host cell arenot being addressed yet. H. contortus small GTPase ADP-ribosylation 1 gene (HcARF1) was cloned and recombinant protein of HcARF1 (rHcARF1) was successfully expressed in Escherichia coli. Binding activity of rHcARF1 to goat PBMCs was confirmed by immunofluorescence assay (IFA) and its immunomudulatory effects on cytokine secretion, cell proliferation, cell migration and nitric oxide production (NO) were observed by co-incubation of rHcARF1. IFA results revealed that rHcARF1 could bind to the PBMCs. The interaction of rHcARF1 modulated the cytokine production, the production of IL-4, IL-10 and IL-17 was increased in a dose dependent manner, however, the IFN-γ production was significantly decreased. Cell migration and NO production were significantly increased by rHcARF1, whereas, rHcARF1 treatment significantly suppressed the proliferation of the PBMC in a dose dependent manner. Our findings showed that the rHcARF1 play important roles on the goat PBMCs.

17.
Oncotarget ; 7(51): 83926-83937, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27893414

ABSTRACT

A 24 kDa protein is one of the important components in Haemonchus contortus (barber pole worm) excretory/secretory products (HcESPs), which was shown to have important antigenic function. However, little is known about the immunomodulatory effects of this proteinon host cell. In the present study gene encoding 24kDa excretory/secretory protein (HcES-24) was cloned. The recombinant protein of HcES-24 (rHcES-24) was expressed in a histidine-tagged fusion protein soluble form in Escherichia coli. Binding activity of rHcES-24 to goat PBMCs was confirmed by immunofluorescence assay (IFA) and its immunomudulatory effect on cytokine secretion, cell proliferation, cell migration and nitric oxide production were observed by co-incubation of rHcES-24. IFA results revealed that rHcES-24 could bind to the PBMCs. The interaction of rHcES-24 increased the production of IL4, IL10, IL17 and cell migration in dose dependent manner. However, rHcES-24 treatment significantly suppressed the production of IFNγ, proliferation of the PBMC and Nitric oxide (NO) production. Our findings showed that the rHcES-24 played important regulatory effects on the goat PBMCs.


Subject(s)
Goats/immunology , Haemonchus/immunology , Helminth Proteins/immunology , Leukocytes, Mononuclear/immunology , Animals , Cell Proliferation , Cells, Cultured , Cloning, Molecular , Cytokines/immunology , Cytokines/metabolism , Goats/metabolism , Goats/parasitology , Haemonchus/genetics , Haemonchus/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Host-Parasite Interactions , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/parasitology , Nitric Oxide/immunology , Nitric Oxide/metabolism , Phylogeny , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sequence Analysis, Protein
18.
J Therm Biol ; 61: 82-90, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27712665

ABSTRACT

The mapping of tissue proteomes can identify the molecular regulators and effectors of their physiological activity. However, proteomic response of a mammalian tissue against heat stress (HS) particularly of the pituitary gland has not yet been resolved. The proteomic response of the mouse pituitary gland against HS at 40oC was evaluated by iTRAQ. We found that, HS actively regulates stress-related proteins. Among 375 differentially expressed proteins, 26 up and 46 downregulated proteins were found as stress responsive proteins. Two proteins belonging to the HSP70 and one to HSP90 family were found upregulated. Meanwhile, the expression of HSP90α (Cytosolic), HSP60, and HSP84b were observed to be downregulated. A neuroprotective enzyme Nmnat3 was observed to be significantly upregulated. Three proteins related to the intermediate filament (IF) proteins (lamins, vimentin and keratins) were also found to be upregulated. We reported, an association between the IF proteins and HSPs as a biological marker of HS. The expression of Apo A-IV was upregulated and might be one explanation for low food intake during HS. Our findings indicated that, differentially expressed proteins might be played important roles in combating HS.


Subject(s)
Gene Expression Regulation , Heat-Shock Proteins/genetics , Heat-Shock Response , Pituitary Gland/physiology , Animals , Apolipoproteins A/genetics , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Hot Temperature , Male , Mice , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Proteomics , RNA, Messenger/genetics
19.
Exp Parasitol ; 171: 57-66, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27751769

ABSTRACT

14-3-3 proteins have been found to be an excreted/secreted antigen and assumed to be released into the host-parasite interface and described in several unicellular and multicellular parasites. However, little is known about the immunomodulatory effects of H. controtus 14-3-3 protein on host cell. In present study, 14-3-3 isoform 2 gene, designated as Hcftt-2, was amplified by reverse transcription-polymerase chain reaction (RT-PCR) from the adult H. contortus cDNA and cloned into expression plasmid pET32a (+) and expression of the recombinant protein (rHcftt-2) was induced by IPTG. Binding activity of rHcftt-2 to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immunofluorescence assay (IFA) and modulatory effects on cytokine production, cell proliferation, cell migration and nitric oxide (NO) production were observed by co-incubation of rHcftt-2 with goat PBMCs. Sequence analysis showed that it had significant homology with the known 14-3-3 protein isoform 2. Results of IFA revealed that, the rHcftt-2 was bound to the cell surface. We found that, the productions of IL10, IL-17, IFN-γ and cell migration of PBMCs were increased after the cells were incubated with rHCftt-2. However, the productions of IL-4, NO and cell proliferation of the PBMCs were significantly decreased in dose depended manner. Our results showed that the Hcftt-2 played important suppressive regulatory effects on the goat PBMCs.


Subject(s)
Haemonchus/immunology , Helminth Proteins/immunology , Interleukin-4/immunology , Neutrophils/immunology , Recombinant Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Helminth/biosynthesis , Cell Proliferation/drug effects , Cloning, Molecular , DNA, Complementary/metabolism , DNA, Helminth/metabolism , Dose-Response Relationship, Drug , Female , Goats , Haemonchus/chemistry , Haemonchus/genetics , Helminth Proteins/chemistry , Helminth Proteins/pharmacology , Interleukin-4/metabolism , Neutrophils/metabolism , Nitric Oxide/metabolism , Phylogeny , Polymerase Chain Reaction , Protein Isoforms/immunology , Protein Isoforms/pharmacology , RNA, Helminth/genetics , RNA, Helminth/isolation & purification , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Sequence Alignment
20.
PLoS One ; 11(7): e0159796, 2016.
Article in English | MEDLINE | ID: mdl-27467391

ABSTRACT

Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs) interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PBMCs) in vivo using liquid chromatography-tandem mass spectrometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points were identified from a H. contortus protein database using SEQUEST searches. The L4 and L5 stages of H. contortus represented a higher proportion of the identified proteins compared with the early and late adult stages. Both stage-specific interacting proteins and proteins that were common to multiple stages were identified. Forty-seven interacting proteins were shared among all stages. The gene ontology (GO) distributions of the identified goat PBMC-interacting proteins were nearly identical among all developmental stages, with high representation of binding and catalytic activity. Cellular, metabolic and single-organism processes were also annotated as major biological processes, but interestingly, more proteins were annotated as localization processes at the L5 stage than at the L4 and adult stages. Based on the clustering of homologous proteins, we improved the functional annotations of un-annotated proteins identified at different developmental stages. Some unnamed H. contortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-9, were identified by STRING protein clustering analysis.


Subject(s)
Haemonchus/metabolism , Helminth Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Proteomics , Animals , Chromatography, Liquid , Goats , Protein Binding , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL