Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38463952

ABSTRACT

Gene transcription is a highly regulated process, and deregulation of transcription factors activity underlies numerous pathologies including cancer. Albeit near four decades of studies have established that the E2F pathway is a core transcriptional network that govern cell division in multi-cellular organisms1,2, the molecular mechanisms that underlie the functions of E2F transcription factors remain incompletely understood. FOXK1 and FOXK2 transcription factors have recently emerged as important regulators of cell metabolism, autophagy and cell differentiation3-6. While both FOXK1 and FOXK2 interact with the histone H2AK119ub deubiquitinase BAP1 and possess many overlapping functions in normal biology, their specific functions as well as deregulation of their transcriptional activity in cancer is less clear and sometimes contradictory7-13. Here, we show that elevated expression of FOXK1, but not FOXK2, in primary normal cells promotes transcription of E2F target genes associated with increased proliferation and delayed entry into cellular senescence. FOXK1 expressing cells are highly prone to cellular transformation revealing important oncogenic properties of FOXK1 in tumor initiation. High expression of FOXK1 in patient tumors is also highly correlated with E2F gene expression. Mechanistically, we demonstrate that FOXK1, but not FOXK2, is specifically modified by O-GlcNAcylation. FOXK1 O-GlcNAcylation is modulated during the cell cycle with the highest levels occurring during the time of E2F pathway activation at G1/S. Moreover, loss of FOXK1 O-GlcNAcylation impairs FOXK1 ability to promote cell proliferation, cellular transformation and tumor growth. Mechanistically, expression of FOXK1 O-GlcNAcylation-defective mutants results in reduced recruitment of BAP1 to gene regulatory regions. This event is associated with a concomitant increase in the levels of histone H2AK119ub and a decrease in the levels of H3K4me1, resulting in a transcriptional repressive chromatin environment. Our results define an essential role of O-GlcNAcylation in modulating the functions of FOXK1 in controlling the cell cycle of normal and cancer cells through orchestration of the E2F pathway.

2.
Nat Commun ; 14(1): 3560, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322019

ABSTRACT

Cell motility is a critical feature of invasive tumour cells that is governed by complex signal transduction events. Particularly, the underlying mechanisms that bridge extracellular stimuli to the molecular machinery driving motility remain partially understood. Here, we show that the scaffold protein CNK2 promotes cancer cell migration by coupling the pro-metastatic receptor tyrosine kinase AXL to downstream activation of ARF6 GTPase. Mechanistically, AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane. In turn, CNK2 stimulates ARF6 by associating with cytohesin ARF GEFs and with a novel adaptor protein called SAMD12. ARF6-GTP then controls motile forces by coordinating the respective activation and inhibition of RAC1 and RHOA GTPases. Significantly, genetic ablation of CNK2 or SAMD12 reduces metastasis in a mouse xenograft model. Together, this work identifies CNK2 and its partner SAMD12 as key components of a novel pro-motility pathway in cancer cells, which could be targeted in metastasis.


Subject(s)
ADP-Ribosylation Factors , Neoplasms , Humans , Mice , Animals , ADP-Ribosylation Factors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , ADP-Ribosylation Factor 6 , Signal Transduction/physiology , Cell Movement/physiology , Neoplasms/genetics , rac1 GTP-Binding Protein/metabolism
3.
High Educ (Dordr) ; : 1-19, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36684612

ABSTRACT

The experiences of lesbian, gay, bisexual, and transgender (LGBT +) individuals in Science, Technology, Engineering, and Mathematics (STEM) are still understudied and, despite some improvements, are still characterised by patterns of exclusion, disadvantage, and discrimination. In this article, we explore how visibility is perceived and navigated by LGBT + academics and PhD students in STEM, with a focus on the ways that interlocking systems of oppression impact people and groups who are marginalised and historically excluded. This article draws on a broader research project about the experiences of women and LGBT + people in STEM that was conducted between 2019 and 2020 at a UK university and is framed by intersectionality theory. Based on the thematic analysis of interviews and focus groups with 24 LGBT + participants, findings suggest that visibility is still a risk for LGBT + academics and PhD students in STEM. We found that the labour of navigating visibility was perceived as an unfair disadvantage and that the focus on individuals' visibility in the absence of meaningful and transformative inclusion initiatives by higher education institutions was regarded as tokenistic. The article argues that addressing LGBT + visibility should firstly be an institutional responsibility and not an individual burden and that this work is essential to set the conditions for personal visibility to happen by choice, safely and without retribution.

4.
J Sch Nurs ; : 10598405221118824, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35942704

ABSTRACT

The Human Papillomavirus (HPV) vaccine can prevent 90% of cancers caused by HPV. Health care provider recommendations affect vaccine uptake, yet there are a lack of studies examining the impact of the school nurse (SN) in vaccine recommendations. The purpose of this study was to evaluate the impact of adding a SN HPV recommendation to the standard vaccination letter sent to parents/guardians. The rate of vaccination between the intervention and control schools was not statistically significant (Estimate (Std. Error) = -0.3066 (0.2151), p = 0.154). After controlling for age, sex, race, insurance type, and medical practice type, there was no significant difference in the likelihood to receive the HPV vaccine (OR = 1.53, 95% CI: 0.563-4.19 in 2018; OR = 1.34, 95% CI: 0.124-14.54 in 2019. Further work is needed to clarify how school nurses can better promote HPV vaccine, and which adolescent demographic groups (e.g., race, insurance type, provider type) face barriers to HPV vaccine uptake.

5.
Nat Rev Mol Cell Biol ; 21(10): 607-632, 2020 10.
Article in English | MEDLINE | ID: mdl-32576977

ABSTRACT

The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Signal Transduction/physiology , Animals , Cell Differentiation/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Humans
6.
J Cell Sci ; 133(4)2020 02 24.
Article in English | MEDLINE | ID: mdl-32005696

ABSTRACT

USP16 (also known as UBP-M) has emerged as a histone H2AK119 deubiquitylase (DUB) implicated in the regulation of chromatin-associated processes and cell cycle progression. Despite this, available evidence suggests that this DUB is also present in the cytoplasm. How the nucleo-cytoplasmic transport of USP16, and hence its function, is regulated has remained elusive. Here, we show that USP16 is predominantly cytoplasmic in all cell cycle phases. We identified the nuclear export signal (NES) responsible for maintaining USP16 in the cytoplasm. We found that USP16 is only transiently retained in the nucleus following mitosis and then rapidly exported from this compartment. We also defined a non-canonical nuclear localization signal (NLS) sequence that plays a minimal role in directing USP16 into the nucleus. We further established that this DUB does not accumulate in the nucleus following DNA damage. Instead, only enforced nuclear localization of USP16 abolishes DNA double-strand break (DSB) repair, possibly due to unrestrained DUB activity. Thus, in contrast to the prevailing view, our data indicate that USP16 is actively excluded from the nucleus and that this DUB might indirectly regulate DSB repair.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cell Nucleus , Nuclear Export Signals , Active Transport, Cell Nucleus , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Interphase , Nuclear Export Signals/genetics , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism
7.
J Comput Chem ; 37(8): 753-62, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-26691274

ABSTRACT

Protein-ligand docking is a commonly used method for lead identification and refinement. While traditional structure-based docking methods represent the receptor as a rigid body, recent developments have been moving toward the inclusion of protein flexibility. Proteins exist in an interconverting ensemble of conformational states, but effectively and efficiently searching the conformational space available to both the receptor and ligand remains a well-appreciated computational challenge. To this end, we have developed the Flexible CDOCKER method as an extension of the family of complete docking solutions available within CHARMM. This method integrates atomically detailed side chain flexibility with grid-based docking methods, maintaining efficiency while allowing the protein and ligand configurations to explore their conformational space simultaneously. This is in contrast to existing approaches that use induced-fit like sampling, such as Glide or Autodock, where the protein or the ligand space is sampled independently in an iterative fashion. Presented here are developments to the CHARMM docking methodology to incorporate receptor flexibility and improvements to the sampling protocol as demonstrated with re-docking trials on a subset of the CCDC/Astex set. These developments within CDOCKER achieve docking accuracy competitive with or exceeding the performance of other widely utilized docking programs.


Subject(s)
Glycoside Hydrolases/metabolism , Molecular Docking Simulation , Momordica charantia/enzymology , Glycoside Hydrolases/chemistry , Ligands , Momordica charantia/chemistry , Momordica charantia/metabolism , Protein Binding , Protein Conformation
8.
Proc Natl Acad Sci U S A ; 112(41): E5608-17, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26420867

ABSTRACT

The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin-substrate interactions and as key determinants of PLC dynamics.


Subject(s)
Adenosine Triphosphate/immunology , Calbindin 2/immunology , Endoplasmic Reticulum/immunology , Histocompatibility Antigens Class I/immunology , Adenosine Triphosphate/genetics , Animals , Calbindin 2/genetics , Calcium/immunology , Endoplasmic Reticulum/genetics , Histocompatibility Antigens Class I/genetics , Mice , Mice, Knockout , Protein Binding/genetics , Protein Binding/immunology , Protein Structure, Tertiary
9.
J Biol Chem ; 290(48): 28643-63, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26416890

ABSTRACT

The deubiquitinase (DUB) and tumor suppressor BAP1 catalyzes ubiquitin removal from histone H2A Lys-119 and coordinates cell proliferation, but how BAP1 partners modulate its function remains poorly understood. Here, we report that BAP1 forms two mutually exclusive complexes with the transcriptional regulators ASXL1 and ASXL2, which are necessary for maintaining proper protein levels of this DUB. Conversely, BAP1 is essential for maintaining ASXL2, but not ASXL1, protein stability. Notably, cancer-associated loss of BAP1 expression results in ASXL2 destabilization and hence loss of its function. ASXL1 and ASXL2 use their ASXM domains to interact with the C-terminal domain (CTD) of BAP1, and these interactions are required for ubiquitin binding and H2A deubiquitination. The deubiquitination-promoting effect of ASXM requires intramolecular interactions between catalytic and non-catalytic domains of BAP1, which generate a composite ubiquitin-binding interface (CUBI). Notably, the CUBI engages multiple interactions with ubiquitin involving (i) the ubiquitin carboxyl hydrolase catalytic domain of BAP1, which interacts with the hydrophobic patch of ubiquitin, and (ii) the CTD domain, which interacts with a charged patch of ubiquitin. Significantly, we identified cancer-associated mutations of BAP1 that disrupt the CUBI and notably an in-frame deletion in the CTD that inhibits its interaction with ASXL1/2 and DUB activity and deregulates cell proliferation. Moreover, we demonstrated that BAP1 interaction with ASXL2 regulates cell senescence and that ASXL2 cancer-associated mutations disrupt BAP1 DUB activity. Thus, inactivation of the BAP1/ASXL2 axis might contribute to cancer development.


Subject(s)
Cell Proliferation , Neoplasms/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Proteases/metabolism , HEK293 Cells , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neoplasms/genetics , Neoplasms/pathology , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Proteases/genetics
10.
Epigenetics ; 10(8): 677-91, 2015.
Article in English | MEDLINE | ID: mdl-26075789

ABSTRACT

O-GlcNAcylation is a posttranslational modification catalyzed by the O-Linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and reversed by O-GlcNAcase (OGA). Numerous transcriptional regulators, including chromatin modifying enzymes, transcription factors, and co-factors, are targeted by O-GlcNAcylation, indicating that this modification is central for chromatin-associated processes. Recently, OGT-mediated O-GlcNAcylation was reported to be a novel histone modification, suggesting a potential role in directly coordinating chromatin structure and function. In contrast, using multiple biochemical approaches, we report here that histone O-GlcNAcylation is undetectable in mammalian cells. Conversely, O-GlcNAcylation of the transcription regulators Host Cell Factor-1 (HCF-1) and Ten-Eleven Translocation protein 2 (TET2) could be readily observed. Our study raises questions on the occurrence and abundance of O-GlcNAcylation as a histone modification in mammalian cells and reveals technical complications regarding the detection of genuine protein O-GlcNAcylation. Therefore, the identification of the specific contexts in which histone O-GlcNAcylation might occur is still to be established.


Subject(s)
DNA-Binding Proteins/genetics , Epigenesis, Genetic , Histones/genetics , Host Cell Factor C1/genetics , Proto-Oncogene Proteins/genetics , beta-N-Acetylhexosaminidases/genetics , Acylation , Animals , Chromatin/genetics , Dioxygenases , Glycosylation , HEK293 Cells , Histones/metabolism , Humans , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational/genetics , beta-N-Acetylhexosaminidases/metabolism
11.
Proc Natl Acad Sci U S A ; 111(33): 12067-72, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25002472

ABSTRACT

The kinase-inducible domain interacting (KIX) domain of the CREB binding protein (CBP) is capable of simultaneously binding two intrinsically disordered transcription factors, such as the mixed-lineage leukemia (MLL) and c-Myb peptides, at isolated interaction sites. In vitro, the affinity for binding c-Myb is approximately doubled when KIX is in complex with MLL, which suggests a positive cooperative binding mechanism, and the affinity for MLL is also slightly increased when KIX is first bound by c-Myb. Expanding the scope of recent NMR and computational studies, we explore the allosteric mechanism at a detailed molecular level that directly connects the microscopic structural dynamics to the macroscopic shift in binding affinities. To this end, we have performed molecular dynamics simulations of free KIX, KIX-c-Myb, MLL-KIX, and MLL-KIX-c-Myb using a topology-based Go-like model. Our results capture an increase in affinity for the peptide in the allosteric site when KIX is prebound by a complementary effector and both peptides follow an effector-independent folding-and-binding mechanism. More importantly, we discover that MLL binding lowers the entropic cost for c-Myb binding, and vice versa, by stabilizing the L12-G2 loop and the C-terminal region of the α3 helix on KIX. This work demonstrates the importance of entropy in allosteric signaling between promiscuous molecular recognition sites and can inform the rational design of small molecule stabilizers to target important regions of conformationally dynamic proteins.


Subject(s)
CREB-Binding Protein/metabolism , Allosteric Regulation , CREB-Binding Protein/chemistry , Molecular Dynamics Simulation
12.
Mol Cell ; 54(3): 392-406, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24703950

ABSTRACT

The tumor suppressor BAP1 interacts with chromatin-associated proteins and regulates cell proliferation, but its mechanism of action and regulation remain poorly defined. We show that the ubiquitin-conjugating enzyme UBE2O multi-monoubiquitinates the nuclear localization signal of BAP1, thereby inducing its cytoplasmic sequestration. This activity is counteracted by BAP1 autodeubiquitination through intramolecular interactions. Significantly, we identified cancer-derived BAP1 mutations that abrogate autodeubiquitination and promote its cytoplasmic retention, indicating that BAP1 autodeubiquitination ensures tumor suppression. The antagonistic relationship between UBE2O and BAP1 is also observed during adipogenesis, whereby UBE2O promotes differentiation and cytoplasmic localization of BAP1. Finally, we established a putative targeting consensus sequence of UBE2O and identified numerous chromatin remodeling factors as potential targets, several of which tested positive for UBE2O-mediated ubiquitination. Thus, UBE2O defines an atypical ubiquitin-signaling pathway that coordinates the function of BAP1 and establishes a paradigm for regulation of nuclear trafficking of chromatin-associated proteins.


Subject(s)
Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , 3T3-L1 Cells , Adipocytes/physiology , Amino Acid Sequence , Animals , Cell Differentiation , Consensus Sequence , Cytoplasm/metabolism , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Mutation, Missense , Neoplasms/genetics , Nuclear Localization Signals , Protein Transport , Signal Transduction , Transcription Factors/chemistry , Transcription Factors/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/genetics
13.
J Am Chem Soc ; 135(9): 3363-6, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23384013

ABSTRACT

Like many coactivators, the GACKIX domain of the master coactivator CBP/p300 recognizes transcriptional activators of diverse sequence composition via dynamic binding surfaces. The conformational dynamics of GACKIX that underlie its function also render it especially challenging for structural characterization. We have found that the ligand discovery strategy of Tethering is an effective method for identifying small-molecule fragments that stabilize the GACKIX domain, enabling for the first time the crystallographic characterization of this important motif. The 2.0 Å resolution structure of GACKIX complexed to a small molecule was further analyzed by molecular dynamics simulations, which revealed the importance of specific side-chain motions that remodel the activator binding site in order to accommodate binding partners of distinct sequence and size. More broadly, these results suggest that Tethering can be a powerful strategy for identifying small-molecule stabilizers of conformationally malleable proteins, thus facilitating their structural characterization and accelerating the discovery of small-molecule modulators.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Small Molecule Libraries/chemistry , Models, Molecular , Molecular Structure , Surface Properties
14.
Angew Chem Int Ed Engl ; 51(45): 11258-62, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23042634

ABSTRACT

Capturing a coactivator, naturally: the natural products sekikaic acid and lobaric acid, isolated after a high-throughput screen of a structurally diverse extract collection, effectively target the dynamic binding interfaces of the GACKIX domain of the coactivator CBP/p300. These molecules are the most effective inhibitors of the GACKIX domain yet described and are uniquely selective for this domain.


Subject(s)
Depsides/chemistry , Lactones/chemistry , Salicylates/chemistry , p300-CBP Transcription Factors/chemistry , Depsides/metabolism , Lactones/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Structure, Tertiary , Salicylates/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL