Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 997
Filter
1.
Front Neurol ; 15: 1449417, 2024.
Article in English | MEDLINE | ID: mdl-39228512

ABSTRACT

Introduction: This research seeks to investigate how early rehabilitation nursing, guided by Orem's self-care theory, affects cognitive function, neurological function, and daily living skills in individuals who have suffered a traumatic brain injury (TBI). Methods: A study was conducted with 108 patients with traumatic brain injury who were hospitalized at our facility from January 2021 to March 2023. Based on their admission dates, the participants were separated into a control group (n = 56) and an observation group (n = 52). The control group received standard nursing care, while the observation group received a combination of conventional treatment and nursing interventions based on Orem's self-care model. The research assessed alterations in the ability to perform daily tasks (Activities of Daily Living, ADL), neurological health (National Institutes of Health Stroke Scale, NIHSS; Glasgow Coma Scale, GCS), and cognitive abilities (Montreal Cognitive Assessment Scale, MoCA; Mini-Mental State Examination, MMSE) in both sets of participants prior to and following 4 and 8 weeks of nursing assistance. Results: Following the intervention, the group being observed showed notably increased ADL scores at 4 weeks (p < 0.001) and 8 weeks (p < 0.001) in comparison to the control group. At 4 weeks and 8 weeks after nursing, the observation group had significantly lower NIHSS scores compared to the control group (4 weeks after nursing, p = 0.03; 4 weeks after nursing, p < 0.001). GCS score comparison showed the similar results (4 weeks after nursing, p = 0.013; 4 weeks after nursing, p = 0.003). Moreover, the participants in the observation group had notably higher MoCA and MMSE scores in comparison with the control group 4 and 8 weeks after nursing (all p < 0.001). Conclusion: Orem's self-care theory improves patients' cognitive, neurological, and daily living functions of TBI patients during early rehabilitation nursing. This method helps enhance the level of care given by healthcare professionals, leading to more thorough and compassionate nursing care for patients.

2.
Int J Biol Macromol ; 279(Pt 2): 135243, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233154

ABSTRACT

Magnetic chitosan microspheres (Al@CTS@Fe3O4) were prepared for haem separation via chemical cross-linking of chitosan, Fe3O4 and AlCl3·6H2O. The properties of the Al@CTS@Fe3O4 microspheres were investigated through techniques including XRD, TEM, FTIR, BET analysis, SEM, TG, VSM, XPS and pHpzc analysis. The haem adsorption of Al@CTS@Fe3O4 was optimized via a Box-Behnken design (BBD) with three operating factors: Fe3O4 dose (0.5-1.3 g), AlCl3·6H2O concentration (0.25-1.25 mol/L) and glutaraldehyde dose (2-6 mL). The optimal haem adsorption effect was achieved with 1.1 g of Fe3O4, 0.75 mol/L AlCl3·6H2O, and 3 mL of glutaraldehyde. The adsorption kinetics and isotherms demonstrated that haem adsorption by the Al@CTS@Fe3O4 microspheres was best described by the pseudo-second-order model. The maximum adsorption capacity is 33.875 mg/g at pH 6. After six adsorption-desorption cycles, the removal of haem still reached 53.83 %. The surface adsorption mechanism of haem on Al@CTS@Fe3O4 can be attributed to electrostatic, hydrogen bonding, and n-π interactions. Thermodynamic calculations indicated that the adsorption process is spontaneous, with the microspheres preferentially accepting electrons and haem preferentially providing electrons. Consequently, the Al@CTS@Fe3O4 microspheres exhibit considerable potential as adsorbents for haem separation.

3.
Shock ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39158535

ABSTRACT

ABSTRACT: Pelvic fractures are severe traumatic injuries often accompanied by potentially fatal massive bleeding. Rapid control of hemorrhages in pre-hospital emergency settings is critical for improving outcomes in traumatic bleeding. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a promising technique for controlling active bleeding from pelvic fractures. By inserting a balloon catheter into the aorta, REBOA helps maintain blood flow to vital organs such as the brain and heart. This paper provides a comprehensive overview of the initial management of non-compressive trunk hemorrhage caused by pelvic fractures, introduces the technical principles and developments of REBOA, and explores its extensive application in pre-hospital emergency care. It delves into the operational details and outlines strategies for effectively managing potential complications. We aim to offer a theoretical framework for the future utilization of REBOA in managing uncontrollable hemorrhage associated with pelvic fractures in pre-hospital emergencies.

4.
Int Immunopharmacol ; 142(Pt A): 113043, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216120

ABSTRACT

OBJECTIVE: Limited research has focused on the role of dihydrouridine synthases (DUS) family members in human tumors. Our previous findings indicated an impact of dihydrouridine synthase 4 like (DUS4L) on cell proliferation and apoptosis in lung adenocarcinoma (LUAD) A549 cell, yet its broader functions and regulatory mechanisms in LUAD remain elusive. METHODS: Using a LUAD tissue microarray and immunohistochemical (IHC) staining, we validated variations in DUS4L protein expression levels among LUAD patients and assessed its clinical significance. Additional experiments using short hairpin RNA (shRNA) against DUS4L (sh-DUS4L-2), LUAD cell lines, cell function assays (including wound healing, transwell migration and invasion, colony formation, and apoptosis assays), and mouse tumor xenografts were performed to examine the biological roles of DUS4L in LUAD progression. RNA sequencing, proteomic analyses, mass spectrometry, and co-immunoprecipitation experiments were conducted to identify and validate DUS4L-regulated downstream target genes and signaling pathways. RESULTS: We identified a consistent upregulation of DUS4L in LUAD tissues. In vitro and in vivo experiments underscored the inhibitory effect of DUS4L downregulation on LUAD progression, including migration, invasion, and proliferation. Mechanistically, DUS4L was found to interact with the signaling molecule GRB2, promoting LUAD progression and metastasis by inducing epithelial-mesenchymal transition (EMT) via the PI3K/AKT and ERK/MAPK pathways. CONCLUSION: Our results establish the functional role of DUS4L in driving the progression and metastasis of LUAD, implicating its potential as a candidate therapeutic target for LUAD.

5.
J Chem Phys ; 161(8)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39212211

ABSTRACT

Evaluation of the charge transport property of organic semiconductors requires exact quantum dynamics simulation of large systems. We present a numerically nearly exact approach to investigate carrier transport dynamics in organic semiconductors by extending the non-Markovian stochastic Schrödinger equation with complex frequency modes to a forward-backward scheme and by solving it using the matrix product state (MPS) approach. By utilizing the forward-backward formalism for noise generation, the bath correlation function can be effectively treated as a temperature-independent imaginary part, enabling a more accurate decomposition with fewer complex frequency modes. Using this approach, we study the carrier transport and mobility in the one-dimensional Peierls model, where the nonlocal electron-phonon interaction is taken into account. The reliability of this approach was validated by comparing carrier diffusion motion with those obtained from the hierarchical equations of motion method across various parameter regimes of the phonon bath. The efficiency was demonstrated by the modest virtual bond dimensions of MPS and the low scaling of the computational time with the system size.

6.
Med Biol Eng Comput ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212896

ABSTRACT

Gait abnormalities are common in patients with chronic vestibular syndrome (CVS), and stability analysis and gait feature recognition in CVS patients have clinical significance for diagnosing CVS. This study explored two-dimensional dynamic stability indicators for evaluating gait instability in patients with CVS. The Center of Mass acceleration (COMa) peak of CVS patients was significantly faster than that of the control group (p < 0.05), closer to the back of the body, and slower at the Toe-off (TO) moment, which enlarged the Center of Mass position-velocity combination proportion within the Region of Velocity Stability (ROSv). The sensitivity, specificity, and accuracy of the Center of Mass velocity (COMv) or COMa peaks were 75.0%, 93.7%, and 90.2% for CVS patients and control groups, respectively. The two-dimensional ROSv parameters improved sensitivity, specificity, and accuracy in judging gait instability in patients over traditional dynamic stability parameters. Dynamic stability parameters quantitatively described the differences in dynamic stability during walking between patients with different degrees of CVS and those in the control group. As CVS impairment increases, the patient's dynamic stability decreases. This study provides a reference for the quantitative evaluation of gait stability in patients with CVS.

7.
Front Pharmacol ; 15: 1419040, 2024.
Article in English | MEDLINE | ID: mdl-39170698

ABSTRACT

Background: Osteosarcoma (OS), a bone tumor with high ability of invasion and metastasis, has seriously affected the health of children and adolescents. Many studies have suggested a connection between OS and the epithelial-mesenchymal transition (EMT). We aimed to integrate EMT-Related genes (EMT-RGs) to predict the prognosis, immune infiltration, and therapeutic response of patients with OS. Methods: We used consensus clustering to identify potential EMT-Related OS molecular subtypes. Somatic mutation, tumor immune microenvironment, and functional enrichment analyses were performed for each subtype. We next constructed an EMT-Related risk signature and evaluated it by Kaplan-Meier (K-M) analysis survival and receiver operating characteristic (ROC) curves. Moreover, we constructed a nomogram to more accurately predict OS patients' clinical outcomes. Response effects of immunotherapy in OS patients was analyzed by Tumor Immune Dysfunction and Exclusion (TIDE) analysis, while sensitivity for chemotherapeutic agents was analyzed using oncoPredict. Finally, the expression patterns of hub genes were investigated by single-cell RNA sequencing (scRNA-seq) data analysis. Results: A total of 53 EMT-RDGs related to prognosis were identified, separating OS samples into two separate subgroups. The EMT-high subgroup showed favourable overall survival and more active immune response. Significant correlations were found between EMT-Related DEGs and functions as well as pathways linked to the development of OS. Additionally, a risk signature was established and OS patients were divided into two categories based on the risk scores. The signature presented a good predictive performance and could be recognized as an independent predictive factor for OS. Furthermore, patients with higher risk scores exhibited better sensitivity for five drugs, while no significant difference existed in immunotherapy response between the two risk subgroups. scRNA-seq data analysis displayed different expression patterns of the hub genes. Conclusion: We developed a novel EMT-Related risk signature that can be considered as an independent predictor for OS, which may help improve clinical outcome prediction and guide personalized treatments for patients with OS.

8.
J Chem Phys ; 161(5)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39092942

ABSTRACT

Conical intersections (CIs) play a crucial role in photochemical reactions, offering an efficient channel for ultrafast non-adiabatic relaxation of excited states. This significantly influences the reaction pathways and the resulting products. In this work, we utilize the non-Markovian stochastic Schrödinger equation with complex modes method to explore the dynamics of electronic transitions through conical intersections (CIs) in pyrazine. The linear vibronic coupling model serves as the foundational framework, incorporating both intra-state and inter-state electron-vibrational interactions. The dynamics of the excited electronic transitions are analyzed across varying strengths of system-bath coupling and different bath relaxation times. The accuracy of this method is demonstrated by comparing its predictions with those from the hierarchical equations of motion method.

9.
BMC Med Imaging ; 24(1): 197, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090610

ABSTRACT

BACKGROUND: This study was designed to develop a combined radiomics nomogram to preoperatively predict the risk categorization of thymomas based on contrast-enhanced computed tomography (CE-CT) images. MATERIALS: The clinical and CT data of 178 patients with thymoma (100 patients with low-risk thymomas and 78 patients with high-risk thymomas) collected in our hospital from March 2018 to July 2023 were retrospectively analyzed. The patients were randomly divided into a training set (n = 125) and a validation set (n = 53) in a 7:3 ratio. Qualitative radiological features were recorded, including (a) tumor diameter, (b) location, (c) shape, (d) capsule integrity, (e) calcification, (f) necrosis, (g) fatty infiltration, (h) lymphadenopathy, and (i) enhanced CT value. Radiomics features were extracted from each CE-CT volume of interest (VOI), and the least absolute shrinkage and selection operator (LASSO) algorithm was performed to select the optimal discriminative ones. A combined radiomics nomogram was further established based on the clinical factors and radiomics scores. The differentiating efficacy was determined using receiver operating characteristic (ROC) analysis. RESULTS: Only one clinical factor (incomplete capsule) and seven radiomics features were found to be independent predictors and were used to establish the radiomics nomogram. In differentiating low-risk thymomas (types A, AB, and B1) from high-risk ones (types B2 and B3), the nomogram demonstrated better diagnostic efficacy than any single model, with the respective area under the curve (AUC), accuracy, sensitivity, and specificity of 0.974, 0.921, 0.962 and 0.900 in the training cohort, 0.960, 0.892, 0923 and 0.897 in the validation cohort, respectively. The calibration curve showed good agreement between the prediction probability and actual clinical findings. CONCLUSIONS: The nomogram incorporating clinical factors and radiomics features provides additional value in differentiating the risk categorization of thymomas, which could potentially be useful in clinical practice for planning personalized treatment strategies.


Subject(s)
Nomograms , Radiomics , Thymoma , Thymus Neoplasms , Tomography, X-Ray Computed , Adult , Aged , Female , Humans , Male , Middle Aged , Contrast Media , Diagnosis, Differential , Retrospective Studies , Risk Assessment , ROC Curve , Thoracotomy , Thymoma/diagnostic imaging , Thymoma/surgery , Thymus Neoplasms/diagnostic imaging , Thymus Neoplasms/surgery , Tomography, X-Ray Computed/methods
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(8): 687-695, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39215666

ABSTRACT

Objective To investigate the mechanism of the basement membrane proteoglycan lumican (LUM) in cisplatin resistance in ovarian cancer and to preliminarily explore its effect on type 1 T helper (Th1) cell differentiation. Methods Differentially expressed genes (DEGs) between cisplatin-resistant and cisplatin-sensitive ovarian cancer cell lines were screened using the public gene expression database (GEO). The expression levels of these genes were detected by RT-qPCR. LUM expression in human ovarian cancer cells was knocked down using small interfering RNA (siRNA), and the knockdown efficiency was verified by Western blotting. Flow cytometry was used to detect the effects of LUM knockdown on the cell cycle and apoptosis of cisplatin-treated ovarian cancer cell lines. Potential target proteins of LUM were screened through the PPI network, and their interactions were validated by molecular docking. The TIMER database was used to screen the effects of LUM on cytokine secretion in ovarian cancer cell lines, and the results were validated by ELISA and RT-qPCR. Flow cytometry was performed to analyze the regulatory effect of LUM on the differentiation of CD4+ T cells. Results GEO data showed that LUM was significantly upregulated in cisplatin-resistant cell lines, and its expression level was correlated with patient prognosis. LUM expression level was higher in that of cisplatin-resistant ovarian cancer cell lines, and cisplatin treatment promoted LUM expression. Knockdown of LUM increased cisplatin-induced apoptosis and cell cycle arrest in ovarian cancer cells, enhancing drug sensitivity. Target gene screening suggested that LUM might regulate cisplatin sensitivity in ovarian cancer cells through interaction with Src homology region phosphatase 2(SHP2). Additionally, TIMER database analysis suggested that high LUM expression inhibited Th1 cell differentiation. Knockdown of LUM in cisplatin-resistant cell lines promoted Th1 cell differentiation by regulating the secretion of interferon γ(IFN-γ) and interleukin 12(IL-12) cytokines, thereby influencing the tumoricidal activity of immune cells. Conclusion LUM is upregulated in cisplatin-resistant ovarian cancer cells and reduces cisplatin sensitivity in ovarian cancer cells by regulating the SHP2-related signaling pathway. LUM also promotes tumor resistance by inhibiting Th1 cell differentiation through the regulation of cytokine secretion by ovarian cancer cells, making it a potential target for ovarian cancer treatment.


Subject(s)
Cell Differentiation , Cisplatin , Drug Resistance, Neoplasm , Ovarian Neoplasms , Th1 Cells , Humans , Cisplatin/pharmacology , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Th1 Cells/immunology , Th1 Cells/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Antineoplastic Agents/pharmacology
11.
Environ Res ; 262(Pt 1): 119831, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208977

ABSTRACT

Regarded as a superior urban stormwater management solution, rain gardens can effectively store rainfall runoff and purify water quality. However, the efficiency of traditional rain gardens (TRG) in regulating runoff and removing nitrogen and phosphorus varies under different hydrological conditions. In this study, the TRG was retrofitted to construct a two-stage tandem rain garden (TTRG). Based on the experimental monitoring of rain gardens under natural rainfall from 2011 to 2013, results indicated a significantly higher runoff reduction capacity for the TTRG compared to the traditional garden (p < 0.05), with average runoff and peak flow reduction rates increasing by 42.8% and 36.2%, respectively. Rainfall characteristics significantly impacted the runoff reduction of the TRG (p < 0.05), but not the TTRG (p > 0.05), demonstrating the enhanced control and stability of the TTRG in managing rainfall runoff. The concentration removal efficiency of nitrate nitrogen (NO3--N) was significantly improved (p < 0.05), whereas the total phosphorus (TP), ammonium nitrogen (NH3-N) and total nitrogen (TN) were not significantly changed (p > 0.05). The first-order kinetic model was used to fit the removal effect of different pollutants before and after retrofitting the rain garden, and the removal of NO3--N by the TTRG was better than that of the TRG. The TTRG showed significantly higher load removal efficiencies for TP, NO3--N, and NH3-N compared to TRG (p < 0.05), with average load removal rates increasing by 49.92%, 75.02%, and 14.81%, respectively. The TTRG can regulate urban rainfall runoff more efficiently and stably. By changing the water flow path in the rain garden, the TTRG has a better runoff reduction ability and pollutant purification effect.

12.
Angew Chem Int Ed Engl ; : e202406140, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981859

ABSTRACT

Blue perovskite light-emitting diodes (PeLEDs) are crucial avenues for achieving full-color displays and lighting based on perovskite materials. However, the relatively low external quantum efficiency (EQE) has hindered their progression towards commercial applications. Quasi-two-dimensional (quasi-2D) perovskites stand out as promising candidates for blue PeLEDs, with optimized control over low-dimensional phases contributing to enhanced radiative properties of excitons. Herein, the impact of organic molecular dopants on the crystallization of various n-phase structures in quasi-2D perovskite films. The results reveal that the highly reactive bis(4-(trifluoromethyl)phenyl)phosphine oxide (BTF-PPO) molecule could effectively restrain the formation of organic spacer cation-ordered layered perovskite phases through chemical reactions, simultaneously passivate those uncoordinated Pb2+ defects. Consequently, the prepared PeLEDs exhibited a maximum EQE of 16.6 % (@ 490 nm). The finding provides a new route to design dopant molecules for phase modulation in quasi-2D PeLEDs.

13.
DNA Repair (Amst) ; 141: 103730, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018963

ABSTRACT

While that ROS causes DNA damage is well documented, there has been limited investigation into whether DNA damages and their repair processes can conversely induce oxidative stress. By generating a site-specific DNA double strand break (DSB) via I-SceI endonuclease expression in S. cerevisiae without damaging other cellular components, this study demonstrated that DNA repair does trigger oxidative stress. Deleting genes participating in the initiation of the resection step of homologous recombination (HR), like the MRX complex, resulted in stimulation of ROS. In contrast, deleting genes acting downstream of HR resection suppressed ROS levels. Additionally, blocking non-homologous end joining (NHEJ) also suppressed ROS. Further analysis identified Rad53 as a key player that relays DNA damage signals to alter redox metabolism in an HR-specific manner. These results suggest both HR and NHEJ can drive metabolism changes and oxidative stress, with NHEJ playing a more prominent role in ROS stimulation. Further analysis revealed a correlation between DSB-induced ROS increase and enhanced activity of NADPH oxidase Yno1 and various antioxidant enzymes. Deleting the antioxidant gene SOD1 induced synthetic lethality in HR-deficient mutants like mre11Δ and rad51Δ upon DSB induction. These findings uncover a significant interplay between DNA repair mechanisms and cellular metabolism, providing insights into understanding the side effects of genotoxic therapies and potentially aiding development of more effective cancer treatment strategies.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Oxidative Stress , Reactive Oxygen Species , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Reactive Oxygen Species/metabolism , Checkpoint Kinase 2/metabolism , Checkpoint Kinase 2/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Recombinational DNA Repair , DNA Repair , Homologous Recombination
14.
Nano Lett ; 24(31): 9700-9710, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052427

ABSTRACT

Chemodynamic therapy (CDT) is an emerging therapeutic modality triggered by endogenous substances in the tumor microenvironment (TME) to generate reactive oxygen species. However, the mild acid pH, low H2O2 concentration, and overexpressed glutathione can suppress the CDT efficiency. Herein, ultrasound (US)-triggered Cu2+-based single-atom nanoenzymes (FA-NH2-UiO-66-Cu, FNUC) are constructed with the performance of target and glutathione depletion. In the TME, the single-atom Cu sites of FNUC consume glutathione and the FNUC:Cu+ generates •OH via peroxidase-like activity. The US-activated FNUC exhibits a fast •OH generation rate, a low Michaelis constant, and a large •OH concentration, indicating the cavitation effect of US promotes the •OH generation. Meanwhile, the tumor target of FNUC is confirmed by NIR-II fluorescence imaging, in which it is modified with IR-1061. Combined with the antitumor performance of FNUC in vitro and in vivo, the novel Cu-based SAzymes can achieve efficient and precise cancer treatment.


Subject(s)
Copper , Metal-Organic Frameworks , Tumor Microenvironment , Copper/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Animals , Tumor Microenvironment/drug effects , Mice , Catalysis , Neoplasms/diagnostic imaging , Neoplasms/therapy , Cell Line, Tumor , Glutathione/chemistry , Ultrasonic Waves , Reactive Oxygen Species/metabolism
15.
Oral Dis ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049571

ABSTRACT

OBJECTIVES: This study aimed to investigate the characteristics of tertiary lymphoid structures (TLSs) in oral squamous cell carcinoma (OSCC) and their association with clinical and pathological features. MATERIALS AND METHODS: 12 TLS-related chemokines in TCGA database were analyzed to investigate the TLSs in OSCC. The density, maturity, and location of TLSs in a large cohort of 189 OSCC patients (114 of which had clinical and prognostic information) were assessed. And the significance between TLSs and clinicopathologic characteristics was analyzed. RESULTS: Bioinformatics and analysis showed that TLSs were associated with better clinical outcomes in OSCC. Histological staining and analysis showed that the overall survival rate of the high-density group (71/112, 63.4%) was significantly higher (p < 0.0001) than that of the low-density group (41/112, 36.6%), and the high-density group had fewer lymph node metastases (50.0%/68.3%, p = 0.021). And TLSs were divided into 4 types according to the maturity and location. Different types of TLSs are associated with prognosis (OS, p < 0.0001), clinical features (T stage, p = 0.028; degree of differentiation, p = 0.043), and precancerous lesion types (OSF, p = 0.049) of OSCC patients. CONCLUSION: TLSs were closely associated with better OSCC prognosis, and a more systematic classification may better guide the formulation of further treatment options.

16.
Micromachines (Basel) ; 15(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39064423

ABSTRACT

The topic of soft robotics combines robotics, biology, and material sciences to develop the next generation of robots that are better suited to complex uncertain natural environments and human-centered operations with strict safety requirements [...].

17.
Psychol Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034343

ABSTRACT

Arithmetic fluency is considered considers highly rely on language processing, encompassing essential skills. However, the independent predictive power of phonetic, semantic, or orthographic skills in relation to arithmetic fluency remains an unresolved query. This study introduces the common component hypothesis to elucidate the inconsistent findings in previous research. The hypothesis posits that significant correlations between language and mathematics hinge on whether the language and mathematics utilized in a given task share a common component. According to this hypothesis, processing skills for each of the three fundamental language elements (i.e., phonetic, semantic, orthographic) should correlate with arithmetic fluency, as these elements are also integral to simple arithmetic processing. A cohort of one hundred and ninety-eight primary school students participated in the study, undertaking a battery of tests assessing general cognitive abilities, psycholinguistic elements, and arithmetic fluency. The results showed that orthographic, phonetic, and semantic abilities independently predicted arithmetic fluency, even after accounting for all other cognitive predictors. These findings substantiate the common component hypothesis, providing empirical support for explaining the association between language and mathematics. This evidence contributes to addressing the interplay between language and mathematics in educational contexts.

18.
J Environ Manage ; 366: 121875, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39018863

ABSTRACT

Currently, microbial contamination issues have globally brought out a huge health threat to human beings and animals. To be specific, microorganisms including bacteria and viruses display durable ecological toxicity and various diseases to aquatic organisms. In the past decade, the photocatalytic microorganism inactivation technique has attracted more and more concern owing to its green, low-cost, and sustainable process. A variety kinds of photocatalysts have been employed for killing microorganisms in the natural environment. However, two predominant shortcomings including low activity of photocatalysts and diverse impacts of water characteristics are still displayed in the current photocatalytic disinfection system. So far, various strategies to improve the inherent activity of photocatalysts. Other than the modification of photocatalysts, the optimization of environments of water bodies has been also conducted to enhance microorganisms inactivation. In this mini-review, we outlined the recent progress in photocatalytic sterilization of microorganisms. Meanwhile, the relevant methods of photocatalyst modification and the influences of water body characteristics on disinfection ability were thoroughly elaborated. More importantly, the relationships between strategies for constructing advanced photocatalytic microorganism inactivation systems and improved performance were correlated. Finally, the perspectives on the prospects and challenges of photocatalytic disinfection were presented. We sincerely hope that this critical mini-review can inspire some new concepts and ideas in designing advanced photocatalytic disinfection systems.


Subject(s)
Disinfection , Disinfection/methods , Catalysis , Bacteria/radiation effects , Bacteria/drug effects
19.
J Colloid Interface Sci ; 674: 527-536, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38943913

ABSTRACT

Constructing unique heterostructures is a highly effective approach for enhancing the K+ storage capability of transition metal selenides. Such structures generate internal electric fields that significantly reduce the charge transfer activation energy. However, achieving a flawless interfacial region that maintains the optimal energy level gradient and degree of lattice matching remains a considerable challenge. In this study, we synthesised Setaria-like NiTe2/MoS2@C heterogeneous interfaces at which three-dimensional MoS2 nanosheets are evenly embedded in NiTe2 nanorods to form stabilised heterojunctions. The NiTe2/MoS2 heterojunctions display distinctive electronic configurations and several active sites owing to their low lattice misfits (δ = 13 %), strong electric fields, and uniform carbon shells. A NiTe2/MoS2@C anode in a potassium-ion battery (KIB) exhibited an impressive reversible capacity of 125.8 mAh/g after 1000 cycles at a rate of 500 mA g-1 and a stable reversible capacity of 111.7 mAh/g even after 3000 cycles at 1000 mA g-1. Even the NiTe2/MoS2@C//perylene tetracarboxylic dianhydride full battery configuration maintained a significant reversible capacity of 92.4 mAh/g after 100 cycles at 200 mA g-1, highlighting its considerable potential for application in KIBs. Calculations further revealed that the well-designed NiTe2/MoS2 heterojunction significantly promotes K+ ion diffusion.

20.
Small ; : e2402760, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934553

ABSTRACT

Organic hole transporting materials (HTMs) are extensively studied in perovskite solar cells (PSCs). The HTMs directly contact the underlying perovskite material, and they play additional roles apart from hole transporting. Developing organic HTMs with defect passivation function has been proved to be an efficient strategy to construct efficient and stable PSCs. In this work, new organic molecules with thiocarbonyl (C═S) and carbonyl (C═O) functional groups are synthesized and applied as HTMs (named FN-S and FN-O). FN-S with C═S can be facilely obtained from FN-O containing C═O. Notably, the C═S in FN-S results in superior defect passivation ability compared to FN-O. Moreover, FN-S exhibits excellent hole extraction/transport capability. Conventional PSCs using FN-S as HTM show an impressive power conversion efficiency (PCE) of 23.25%, with excellent long-term stability and operational stability. This work indicates that simply converting C═O to C═S is an efficient way to improve the device performance by strengthening the defect passivation functionality.

SELECTION OF CITATIONS
SEARCH DETAIL