Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Article in English | MEDLINE | ID: mdl-39378130

ABSTRACT

Whole-exome sequencing (WES) data are frequently used for cancer diagnosis and genome-wide association studies (GWAS), based on high-coverage read mapping, informative variant calling, and high-quality reference genomes. The center position of the currently used genome assembly, GRCh38, is now challenged by two newly published telomere-to-telomere (T2T) genomes, T2T-CHM13 and T2T-YAO, and it becomes urgent to have a comparative study to test population specificity using the three reference genomes based on real case WES data. Here we report our analysis along this line for 19 tumor samples collected from Chinese patients. The primary comparison of the exon regions among the three references reveals that the sequences in up to ∼ 1% target regions in T2T-YAO are widely diversified from GRCh38 and may lead to off-target in sequence capture. However, T2T-YAO still outperforms GRCh38 genomes by obtaining 7.41% more mapped reads. Due to more reliable read-mapping and closer phylogenetic relationship with the samples than GRCh38, T2T-YAO reduces half of variant calls of clinical significance which are mostly benign, while maintaining sensitivity in identifying pathogenic variants. T2T-YAO also outperforms T2T-CHM13 in reducing calls of Chinese-specific variants. Our findings highlight the critical need for employing population-specific reference genomes in genomic analysis to ensure accurate variant analysis and the significant benefits of tailoring these approaches to the unique genetic backgrounds of each ethnic group.

2.
BMC Infect Dis ; 24(1): 946, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251931

ABSTRACT

BACKGROUND AND OBJECTIVE: Community-acquired pneumonia (CAP) is a common respiratory disease that frequently requires hospitalisation, and is a significant cause of death worldwide. This study aimed to evaluate the usefulness of alpha-1-antichymotrypsin (AACT) as a diagnostic and prognostic biomarker of CAP. METHODS: We conducted a multicentre prospective cohort study in patients hospitalised with CAP. Plasma AACT levels were measured using a quantitative enzyme-linked immunosorbent assay. Receiver-operating characteristic (ROC) curves and Cox proportional hazards regression were used to assess the association between plasma AACT levels and CAP diagnosis and prognosis. RESULTS: A total of 274 patients with CAP were enrolled in the study. AACT levels were elevated in patients with CAP, especially those with severe CAP and non-survivors. The area under the curve (AUC) of AACT and CRP for diagnosing CAP was 0.755 and 0.843. Cox regression showed that CURB-65 and AACT levels were independent predictors of 30-day mortality. ROC curves showed that plasma AACT levels had the highest accuracy for predicting acute respiratory distress syndrome (ARDS), with an AUC of 0.862. Combining AACT with Pneumonia Severity Index and CURB-65 significantly improved their predictive accuracy for predicting 30-day mortality. CONCLUSION: Plasma AACT levels are elevated in patients with CAP, but plasma AACT level is inferior to the C-reactive protein level for diagnosing CAP. The AACT level can reliably predict the occurrence of ARDS and 30-day mortality in patients with CAP.


Subject(s)
Biomarkers , Community-Acquired Infections , Hospitalization , Pneumonia , ROC Curve , Humans , Community-Acquired Infections/blood , Community-Acquired Infections/mortality , Male , Female , Prospective Studies , Middle Aged , Aged , Prognosis , Pneumonia/blood , Pneumonia/mortality , Pneumonia/diagnosis , Biomarkers/blood , Aged, 80 and over , Severity of Illness Index , Adult
3.
Ann Med ; 56(1): 2399320, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39283042

ABSTRACT

PURPOSE: Patients with bacterial, fungal, and viral community-acquired pneumonia (CAP) were studied to determine their metabolic profiles. METHODS: Loop-mediated isothermal amplification technology and nucleic acid sequence-dependent amplification combined with microfluidic chip technology were applied to screen multiple pathogens from respiratory tract samples. Eighteen patients with single bacterial infection (B-CAP), fifteen with single virus infection (V-CAP), twenty with single fungal infection (F-CAP), and twenty controls were enrolled. UHPLC-MS/MS analysis of untargeted serum samples for metabolic profiles. Multiple linear regression and Spearman's rank correlation analysis were used to determine associations between metabolites and clinical parameters. The sensitivity and specificity of the screened metabolites were also examined, along with their area under the curve. RESULTS: The metabolic signatures of patients with CAP infected by bacteria, viruses, and fungi were markedly different from those of controls. The abundances of 45, 56, and 79 metabolites were significantly unbalanced. Among these differential metabolites, 11, 13, and 29 were unique to the B-CAP, V-CAP, and F-CAP groups, respectively. Bacterial infections were the only known causes of disturbances in the pentose and glucuronate and aldarate and ascorbate metabolism interconversions metabolic pathway. CONCLUSIONS: Serum metabolomic techniques based on UHPLC-MS/MS may identify differences between individuals with CAP who have been infected by various pathogens, and they can also build a metabolite signature for early detection of the origin of infection and prompt care.


Subject(s)
Community-Acquired Infections , Metabolomics , Humans , Female , Male , Middle Aged , Community-Acquired Infections/blood , Community-Acquired Infections/microbiology , Community-Acquired Infections/diagnosis , Metabolomics/methods , Aged , Pneumonia, Bacterial/blood , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Tandem Mass Spectrometry/methods , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Adult , Case-Control Studies , Chromatography, High Pressure Liquid/methods , Metabolome , Sensitivity and Specificity
4.
Microbiol Spectr ; : e0111724, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287459

ABSTRACT

It remains unclear how previous infections and vaccinations influenced and shaped heterogeneous immune responses against Omicron and its variants in diverse populations in China. After the national wave of Omicron in early 2023, we evaluated serum levels of neutralizing antibodies (nAbs) against Omicron (B.1.1.529) and its variants (BA.5, BF.7, and CH1.1) in 33 COVID-19 convalescents and 40 uninfected vaccinees, using vesicular stomatitis virus-based pseudovirus neutralizing assay. In addition, we followed 34 Delta convalescent patients to compare their immune responses against Omicron before (late 2021) and after the Omicron wave (early 2023). NAbs at the acute phase of the disease were investigated in 50 Omicron inpatients, including 24 vaccinated and 26 unvaccinated patients. Among them, nasal mucosal IgA levels were measured in 42 subjects. Compared to vaccination, breakthrough infections significantly increased the breadth and magnitude of serum nAbs and mucosal IgA levels against Omicron variants. Exposure to Omicron but not Delta elicited stronger pan-Omicron responses. In Omicron inpatients, nAbs continued to rise as vaccination doses increased. However, in both vaccinees and convalescents, a fourth dose vaccination did not elicit higher nAbs against Omicron. Furthermore, nAbs against Omicron variants lasted longer than nAbs against WT SARS-CoV-2. Breakthrough infections of Omicron variants elicited specific immune responses against Omicron compared to vaccination and Delta infection. Although repeated vaccination revealed limited impacts on serum nAbs, populations at high risk of hospitalization may still benefit from continued vaccination.IMPORTANCEThe study described the specific humoral immunity against Omicron and its variants (BA.5, BF.7, and CH1.1) in diverse populations, including Delta-positive convalescent patients, Omicron-infected patients with a previous or current confirmed Delta infection, Omicron-positive patients, and healthy controls. In addition, we followed Delta convalescents for 1 year to evaluate the effect of a booster vaccine, breakthrough infection, and reinfection. Nasal mucosal IgA levels against SARS-CoV-2 were also examined. The findings of this study demonstrated the varied responses of individuals in different states following the outbreak of Omicron, highlighting the potential advantages of ongoing immunization for groups that are more vulnerable and have a greater likelihood of being hospitalized.

5.
EBioMedicine ; 106: 105267, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39098109

ABSTRACT

BACKGROUND: Checkpoint inhibitor pneumonitis (CIP) is a potentially fatal adverse event characterized by new pulmonary infiltrates in cancer patients receiving immune checkpoint inhibitor therapy. This study aims to explore the interplay between lung microbiota, dysregulated metabolites, and host immunity in CIP. METHODS: We recruited thirteen hospitalized CIP patients, eleven idiopathic pulmonary fibrosis (IPF) patients, and ten new-onset non-small cell lung cancer patients. Bronchoalveolar lavage fluid samples were collected for 16S rRNA gene sequencing. The percentages of immune cells were determined using manual counting and flow cytometry. Interactions among microbiota, metabolites, and lymphocytes were analyzed using cultured mouse splenocytes and human T cells. FINDINGS: Proteobacteria emerged as the dominant phylum, notably abundant in both the CIP and IPF groups. Vibrio, Halomonas, Mangrovibacter, and Salinivibrio were the predominant microbiota because of their discriminative abundance patterns. Vibrio (r = 0.72, P-adj = 0.007) and Halomonas (r = 0.65, P-adj = 0.023) demonstrated strong correlations with lymphocytes. Vibrio metschnikovii and Mangrovibacter plantisponsors were more abundant in the CIP group than in the IPF group. Lauroylcarnitine, a key intermediary metabolite co-occurring with the predominant microbiota, exhibited a potent effect on cytokine secretion by mouse and human T cells, notably enhancing IFN-γ and TNF-α production from CD4 and CD8 cells in vitro. INTERPRETATION: Lauroylcarnitine, co-occurring with the predominant lung microbiota in CIP, could activate T cells in vitro. These findings suggest potential involvement of lung microbiota and acylcarnitine metabolism dysregulation in the pathogenesis of CIP. FUNDING: This work was supported by Peking University People's Hospital Scientific Research Development Funds (RDJ2022-15) and Provincial Key Clinical Specialty Capacity Building Project 2020 (Department of the Respiratory Medicine).


Subject(s)
Immune Checkpoint Inhibitors , Lung , Lymphocyte Activation , Microbiota , Pneumonia , T-Lymphocytes , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Animals , Mice , Microbiota/drug effects , Male , Female , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Aged , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Lung/microbiology , Lung/pathology , Lung/immunology , Lung/metabolism , Pneumonia/microbiology , Pneumonia/etiology , Pneumonia/metabolism , Pneumonia/chemically induced , Pneumonia/immunology , Middle Aged , Carnitine/analogs & derivatives , Carnitine/metabolism , RNA, Ribosomal, 16S/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/microbiology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Cytokines/metabolism
6.
J Proteome Res ; 23(8): 3460-3468, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39013122

ABSTRACT

Neonatal respiratory distress syndrome (NRDS) is one of the most severe respiratory disorders in preterm infants (PTIs) due to immature lung development. To delineate the serum metabolic alterations and gut microbiota variations in NRDS and assess their implications on neonatal development, we enrolled 13 NRDS neonates and 12 PTIs and collected fecal and serum specimens after birth. Longitudinal fecal sampling was conducted weekly for a month in NRDS neonates. NRDS neonates were characterized by notably reduced gestational ages and birth weights and a higher rate of asphyxia at birth relative to PTIs. Early postnatal disturbances in tryptophan metabolism were evident in the NRDS group, concomitant with elevated relative abundance of Haemophilus, Fusicatenibacter, and Vibrio. Integrative multiomics analyses revealed an inverse relationship between tryptophan concentrations and Blautia abundance. At one-week old, NRDS neonates exhibited cortisol regulation anomalies and augmented hepatic catabolism. Sequential microbial profiling revealed distinct gut microbiota evolution in NRDS subjects, characterized by a general reduction in potentially pathogenic bacteria. The acute perinatal stress of NRDS leads to mitochondrial compromise, hormonal imbalance, and delayed gut microbiota evolution. Despite the short duration of NRDS, its impact on neonatal development is significant and requires extended attention.


Subject(s)
Feces , Gastrointestinal Microbiome , Infant, Premature , Respiratory Distress Syndrome, Newborn , Humans , Infant, Newborn , Respiratory Distress Syndrome, Newborn/microbiology , Respiratory Distress Syndrome, Newborn/metabolism , Feces/microbiology , Female , Male , Gestational Age , Tryptophan/metabolism , Tryptophan/blood , Hydrocortisone/blood
7.
Front Cell Infect Microbiol ; 14: 1347345, 2024.
Article in English | MEDLINE | ID: mdl-38828262

ABSTRACT

Background: To date, more than 770 million individuals have become coronavirus disease 2019 (COVID-19) convalescents worldwide. Emerging evidence highlights the influence of COVID-19 on the oral microbiome during both acute and convalescent disease phases. Front-line healthcare workers are at an elevated risk of exposure to viral infections, and the effects of COVID-19 on their oral microbiome remain relatively unexplored. Methods: Oropharyngeal swab specimens, collected one month after a negative COVID-19 test from a cohort comprising 55 healthcare workers, underwent 16S rRNA sequencing. We conducted a comparative analysis between this post-COVID-19 cohort and the pre-infection dataset from the same participants. Community composition analysis, indicator species analysis, alpha diversity assessment, beta diversity exploration, and functional prediction were evaluated. Results: The Shannon and Simpson indexes of the oral microbial community declined significantly in the post-COVID-19 group when compared with the pre-infection cohort. Moreover, there was clear intergroup clustering between the two groups. In the post-COVID-19 group, the phylum Firmicutes showed a significant increase. Further, there were clear differences in relative abundance of several bacterial genera in contrast with the pre-infection group, including Streptococcus, Gemella, Granulicatella, Capnocytophaga, Leptotrichia, Fusobacterium, and Prevotella. We identified Gemella enrichment in the post-COVID-19 group, potentially serving as a recovery period performance indicator. Functional prediction revealed lipopolysaccharide biosynthesis downregulation in the post-COVID-19 group, an outcome with host inflammatory response modulation and innate defence mechanism implications. Conclusion: During the recovery phase of COVID-19, the oral microbiome diversity of front-line healthcare workers failed to fully return to its pre-infection state. Despite the negative COVID-19 test result one month later, notable disparities persisted in the composition and functional attributes of the oral microbiota.


Subject(s)
Bacteria , COVID-19 , Health Personnel , Microbiota , Oropharynx , RNA, Ribosomal, 16S , SARS-CoV-2 , Humans , COVID-19/microbiology , Oropharynx/microbiology , Oropharynx/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Adult , RNA, Ribosomal, 16S/genetics , Male , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Middle Aged , Cohort Studies
8.
Proteomics Clin Appl ; 18(4): e202300069, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38332320

ABSTRACT

PURPOSE: This study aimed to investigate the diagnostic potential of plasma biomarkers of community-acquired pneumonia (CAP) and their severity grading. EXPERIMENTAL DESIGN: Plasma proteomes from cohort I (n = 32) with CAP were analyzed by data-independent acquisition mass spectrometry (MS). MetaboAnalyst 5.0 was used to statistically evaluate significant differences in proteins from different samples, and demographic and clinical data were recorded for all enrolled patients. Cohort II (n = 80) was used to validate candidate biomarkers. Plasma protein levels were determined using quantitative enzyme-linked immunosorbent assay (ELISA). Correlations were assessed using Pearson's correlation coefficient. A receiver operating characteristic curve was used to verify the association between the variables, CAP diagnosis, and prognosis. RESULTS: 121 differentially expressed proteins (DEPs) were obtained between CAP and controls. These DEPs were mainly aggregated in pathways of phagosome(hsa04145) and complement and coagulation cascades (hsa04610). No significant differential proteins were detected in bacterial, viral, and mixed infection groups. The plasma levels of fetuin-A, alpha-1-antichymotrypsin (AACT), α1-acid glycoprotein (A1AG), and S100A8/S100A9 heterodimers detected by ELISA were consistent with those of MS. AACT, A1AG, S100A8/S100A9 heterodimer, and fetuin-A can potentially be used as diagnostic predictors, and fetuin-A and AACT are potential predictors of SCAP. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma protein profiling can successfully identify potential biomarkers for CAP diagnosis and disease severity assessment. These biomarkers should be further studied for their clinical application.


Subject(s)
Biomarkers , Community-Acquired Infections , Pneumonia , Proteome , Humans , Community-Acquired Infections/blood , Community-Acquired Infections/diagnosis , Male , Female , Biomarkers/blood , Middle Aged , Cohort Studies , Pneumonia/blood , Pneumonia/diagnosis , Proteome/metabolism , Aged , Proteomics/methods , Blood Proteins/analysis , Blood Proteins/metabolism , Adult
9.
BMC Cancer ; 24(1): 107, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238648

ABSTRACT

BACKGROUND: Paclitaxel liposome (Lipusu) is known to be effective in non-small cell lung cancer (NSCLC) as first-line treatment. This study aimed to evaluate the effectiveness and safety of paclitaxel liposome based chemotherapy plus PD-1/PD-L1 inhibitor in patients with advanced NSCLC. METHODS: In this multicenter, retrospective, real-world study, patients with advanced NSCLC who were administered paclitaxel liposome based chemotherapy plus PD-1/PD-L1 inhibitor in three centers (Peking University People's Hospital as the lead center) in China between 2016 and 2022 were included. Progression-free survival (PFS), overall survival (OS), objective response rate, disease control rate, and adverse events (AEs) were evaluated. RESULTS: A total of 49 patients were included, with 33 (67.3%) receiving paclitaxel liposome based chemotherapy plus PD-1/PD-L1 inhibitor as first-line treatment. There were 34 patients (69.4%) diagnosed with squamous cell carcinoma and 15 (30.6%) with adenocarcinoma. The median follow-up was 20.5 (range: 3.1-41.1) months. The median PFS and OS of all patients were 9.7 months (95% confidence interval [CI], 7.0-12.4) and 30.5 months (95% CI, not evaluable-not evaluable), respectively. Patients with squamous cell carcinoma and adenocarcinoma had median PFS of 11 months (95%CI, 6.5-15.5) and 9.3 months (95%CI, 7.0-12.4), respectively. The median PFS was 9.9 months (95%CI, 7.1-12.7) in patients who received the combined regimen as first-line treatment. Treatment-related AEs of any grade were observed in 25 (51.0%) patients, and AEs of grade 3 or worse were observed in nine patients (18.4%). The most common treatment-related AEs were myelosuppression (14.3%) and fever (10.2%). CONCLUSIONS: Paclitaxel liposome based chemotherapy plus PD-1/PD-L1 inhibitor prolonged the PFS in advanced NSCLC with acceptable safety, which was worthy of clinical application.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Paclitaxel , Lung Neoplasms/pathology , Liposomes , Immune Checkpoint Inhibitors/adverse effects , Programmed Cell Death 1 Receptor/therapeutic use , Retrospective Studies , Immunotherapy/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Adenocarcinoma/drug therapy , Carcinoma, Squamous Cell/drug therapy
10.
Diagn Microbiol Infect Dis ; 108(3): 116168, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184984

ABSTRACT

BACKGROUND: Accurate differentiation between Pneumocystis jirovecii (Pj) infection and colonization is crucial for effective treatment. METHODS: From September 2016 to June 2022, 89 immunocompromised patients with unexplained lung infiltrates and clinical suspicion of Pj pneumonia were enrolled at Peking University People's Hospital. Bronchoalveolar lavage fluid (BALF) of these patients were detected by quantitative PCR (qPCR) and droplet digital PCR (ddPCR). RESULTS: The performance of ddPCR was superior to qPCR in detecting Pj infection. Area under the curve was 0.97 (95 %CI: 0.94-1) for ddPCR of the BALF in all patients. The optimal threshold value for discriminating Pj infection from colonization by ddPCR was 13.98 copies/test, with a sensitivity of 97.96 %, specificity of 85.71 %. No obvious correlation between ddPCR copy number and disease severity was observed. CONCLUSION: BALF ddPCR exhibits robust potential in detecting Pj and effectively discriminating colonization and infection.


Subject(s)
Pneumocystis carinii , Pneumonia, Pneumocystis , Humans , Pneumonia, Pneumocystis/diagnosis , Pneumocystis carinii/genetics , Bronchoalveolar Lavage Fluid , Diagnosis, Differential , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
11.
BMC Infect Dis ; 23(1): 833, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012564

ABSTRACT

OBJECTIVE: Droplet digital PCR (ddPCR) is a novel assay to detect pneumocystis jjrovecii (Pj) which has been defined to be more sensitive than qPCR in recent studies. We aimed to explore whether clinical features of pneumocystis pneumonia (PCP) were associated with ddPCR copy numbers of Pj. METHODS: A total of 48 PCP patients were retrospectively included. Pj detection was implemented by ddPCR assay within 4 h. Bronchoalveolar fluid (BALF) samples were collected from 48 patients with molecular diagnosis as PCP via metagenomic next generation sequencing (mNGS) or quantitative PCR detection. Univariate and multivariate logistic regression were performed to screen out possible indicators for the severity of PCP. The patients were divided into two groups according to ddPCR copy numbers, and their clinical features were further analyzed. RESULTS: Pj loading was a pro rata increase with serum (1,3)-beta-D glucan, D-dimmer, neutrophil percentage, procalcitonin and BALF polymorphonuclear leucocyte percentage, while negative correlation with albumin, PaO2/FiO2, BALF cell count, and BALF lymphocyte percentage. D-dimmer and ddPCR copy number of Pj were independent indicators for moderate/severe PCP patients with PaO2/FiO2 lower than 300. We made a ROC analysis of ddPCR copy number of Pj for PaO2/FiO2 index and grouped the patients according to the cut-off value (2.75). The high copy numbers group was characterized by higher level of inflammatory markers. Compared to low copy number group, there was lower level of the total cell count while higher level of polymorphonuclear leucocyte percentage in BALF in the high copy numbers group. Different from patients with high copy numbers, those with high copy numbers had a tendency to develop more severe complications and required advanced respiratory support. CONCLUSION: The scenarios of patients infected with high ddPCR copy numbers of Pj showed more adverse clinical conditions. Pj loading could reflect the severity of PCP to some extent.


Subject(s)
Pneumocystis carinii , Pneumocystis , Pneumonia, Pneumocystis , Respiratory Distress Syndrome , Humans , Pneumonia, Pneumocystis/diagnosis , Retrospective Studies , DNA Copy Number Variations , Bronchoalveolar Lavage Fluid , Polymerase Chain Reaction , Pneumocystis carinii/genetics
12.
Article in English | MEDLINE | ID: mdl-37595788

ABSTRACT

Since its initial release in 2001, the human reference genome has undergone continuous improvement in quality, and the recently released telomere-to-telomere (T2T) version - T2T-CHM13 - reaches its highest level of continuity and accuracy after 20 years of effort by working on a simplified, nearly homozygous genome of a hydatidiform mole cell line. Here, to provide an authentic complete diploid human genome reference for the Han Chinese, the largest population in the world, we assembled the genome of a male Han Chinese individual, T2T-YAO, which includes T2T assemblies of all the 22 + X + M and 22 + Y chromosomes in both haploid. The quality of T2T-YAO is much better than all currently available diploid assemblies, and its haploid version, T2T-YAO-hp, generated by selecting the better assembly for each autosome, reaches the top quality of fewer than one error per 29.5 Mb, even higher than that of T2T-CHM13. Derived from an individual living in the aboriginal region of the Han population, T2T-YAO shows clear ancestry and potential genetic continuity from the ancient ancestors. Each haplotype of T2T-YAO possesses ∼ 330-Mb exclusive sequences, ∼ 3100 unique genes, and tens of thousands of nucleotide and structural variations as compared with CHM13, highlighting the necessity of a population-stratified reference genome. The construction of T2T-YAO, a truly accurate and authentic representative of the Chinese population, would enable precise delineation of genomic variations and advance our understandings in the hereditability of diseases and phenotypes, especially within the context of the unique variations of the Chinese population.

13.
Lung ; 201(4): 387-396, 2023 08.
Article in English | MEDLINE | ID: mdl-37480410

ABSTRACT

PURPOSE: Community-acquired pneumonia (CAP) is a leading cause of adult mortality worldwide and poses a significant global burden. Previous studies have indicated a tendency for viral pneumonia, particularly severe influenza virus pneumonia, to be complicated by Aspergillus superinfection. However, the clinical features and prognostic implications of Aspergillus detection in early-onset viral CAP remain unclear. METHODS: We conducted a prospective multicenter observational cohort study in China involving CAP patients. Adult patients with CAP from six hospitals were enrolled between January 2017 and October 2018. Within 72 h of admission, lower respiratory tract specimens, including sputum and alveolar lavage fluid, were collected. Comprehensive pathogenic testing, utilizing molecular biology techniques, was performed on the collected specimens, encompassing bacteria, atypical pathogens, viruses, and fungi. Patient clinical data were collected through a unified electronic medical record website system. RESULTS: A total of 382 adult CAP patients were included in the study. The viral detection rate was 38% (145/382), with Aspergillus identified in 11.0% (16/145) of viral CAP cases. Mortality among Aspergillus-positive patients was significantly higher (25%, 4/16) compared to Aspergillus-negative patients (5.4%, 7/129) in viral CAP (P = 0.021). Multivariable logistic regression models demonstrated that the presence of Aspergillus at admission might increase the mortality risk in viral CAP [OR (95%CI) = 7.34 (0.92-58.65), P = 0.06]. Furthermore, Aspergillus-positive patients exhibited a significantly lower lymphocyte count than Aspergillus-negative patients (P = 0.047). CONCLUSION: Positive detection of Aspergillus in lower respiratory tract specimens might be associated with higher mortality in early-onset viral CAP. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03093220. Registered retrospectively on 28 March 2017.


Subject(s)
Community-Acquired Infections , Influenza, Human , Pneumonia, Viral , Adult , Humans , Prospective Studies , Retrospective Studies , Aspergillus , Pneumonia, Viral/diagnosis , China/epidemiology , Community-Acquired Infections/diagnosis , Respiratory System
14.
BMC Infect Dis ; 23(1): 231, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37059987

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a major public health challenge worldwide. However, the aetiological and disease severity-related pathogens associated with CAP in adults in China are not well established based on the detection of both viral and bacterial agents. METHODS: A multicentre, prospective study was conducted involving 10 hospitals located in nine geographical regions in China from 2014 to 2019. Sputum or bronchoalveolar lavage fluid (BALF) samples were collected from each recruited CAP patient. Multiplex real-time PCR and bacteria culture methods were used to detect respiratory pathogens. The association between detected pathogens and CAP severity was evaluated. RESULTS: Among the 3,403 recruited eligible patients, 462 (13.58%) had severe CAP, and the in-hospital mortality rate was 1.94% (66/3,403). At least one pathogen was detected in 2,054 (60.36%) patients, with two or more pathogens were co-detected in 725 patients. The ten major pathogens detected were Mycoplasma pneumoniae (11.05%), Haemophilus influenzae (10.67%), Klebsiella pneumoniae (10.43%), influenza A virus (9.49%), human rhinovirus (9.02%), Streptococcus pneumoniae (7.43%), Staphylococcus aureus (4.50%), adenovirus (2.94%), respiratory syncytial viruses (2.35%), and Legionella pneumophila (1.03%), which accounted for 76.06-92.52% of all positive detection results across sampling sites. Klebsiella pneumoniae (p < 0.001) and influenza viruses (p = 0.005) were more frequently detected in older patients, whereas Mycoplasma pneumoniae was more frequently detected in younger patients (p < 0.001). Infections with Klebsiella pneumoniae, Staphylococcus aureus, influenza viruses and respiratory syncytial viruses were risk factors for severe CAP. CONCLUSIONS: The major respiratory pathogens causing CAP in adults in China were different from those in USA and European countries, which were consistent across different geographical regions over study years. Given the detection rate of pathogens and their association with severe CAP, we propose to include the ten major pathogens as priorities for clinical pathogen screening in China.


Subject(s)
Community-Acquired Infections , Legionella pneumophila , Pneumonia, Bacterial , Pneumonia , Humans , Adult , Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Prospective Studies , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/etiology , Streptococcus pneumoniae , Mycoplasma pneumoniae , Respiratory Syncytial Viruses , Klebsiella pneumoniae , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/etiology
15.
Sci Rep ; 13(1): 5715, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029178

ABSTRACT

Increasing evidence indicates that respiratory tract microecological disorders may play a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Understanding the composition of the respiratory microbiome in COPD and its relevance to respiratory immunity will help develop microbiome-based diagnostic and therapeutic approaches. One hundred longitudinal sputum samples from 35 subjects with acute exacerbation of COPD (AECOPD) were analysed for respiratory bacterial microbiome using 16S ribosomal RNA amplicon sequencing technology, and the sputum supernatant was analysed for 12 cytokines using a Luminex liquid suspension chip. Unsupervised hierarchical clustering was employed to evaluate the existence of distinct microbial clusters. In AECOPD, the respiratory microbial diversity decreased, and the community composition changed significantly. The abundances of Haemophilus, Moraxella, Klebsiella, and Pseudomonas increased significantly. Significant positive correlations between the abundance of Pseudomonas and TNF-α, abundance of Klebsiella and the percentage of eosinophils were observed. Furthermore, COPD can be divided into four clusters based on the respiratory microbiome. AECOPD-related cluster was characterized by the enrichment of Pseudomonas and Haemophilus and a high level of TNF-α. Lactobacillus and Veillonella are enriched in therapy-related phenotypes and may play potential probiotic roles. There are two inflammatory endotypes in the stable state: Gemella is associated with the Th2 inflammatory endotypes, whereas Prevotella is associated with the Th17 inflammatory endotypes. Nevertheless, no differences in clinical manifestations were found between these two endotypes. The sputum microbiome is associated with the disease status of COPD, allowing us to distinguish different inflammatory endotypes. Targeted anti-inflammatory and anti-infective therapies may improve the long-term prognosis of COPD.


Subject(s)
Microbiota , Pulmonary Disease, Chronic Obstructive , Humans , Cohort Studies , Tumor Necrosis Factor-alpha , Pulmonary Disease, Chronic Obstructive/pathology , Lung/pathology , Haemophilus , Sputum/microbiology , Disease Progression
16.
Drug Resist Updat ; 68: 100961, 2023 05.
Article in English | MEDLINE | ID: mdl-37004351

ABSTRACT

AIMS: The acquisition of resistance to one antibiotic may confer an increased sensitivity to another antibiotic in bacteria, which is an evolutionary trade-off between different resistance mechanisms, defined as collateral sensitivity (CS). Exploiting the role of CS in treatment design could be an effective method to suppress or even reverse resistance evolution. METHODS: Using experimental evolution, we systematically studied the CS between aminoglycosides and tetracyclines in carbapenem-resistant Klebsiella pneumoniae (CRKP) and explored the underlying mechanisms through genomic and transcriptome analyses. The application of CS-based therapies for resistance suppression, including combination therapy and alternating antibiotic therapy, was further evaluated in vitro and in vivo. RESULTS: Reciprocal CS existed between tetracyclines and aminoglycosides in CRKP. The increased sensitivity of aminoglycoside-resistant strains to tetracyclines was associated with the alteration of bacterial membrane potential, whereas the unbalanced oxidation-reduction process of tetracycline-resistant strains may lead to an increased bacterial sensitivity to aminoglycosides. CS-based combination therapy could efficiently constrain the evolution of CRKP resistance in vitro and in vivo. In addition, alternating antibiotic therapy can re-sensitize CRKP to previously resistant drugs, thereby maintaining the trade-off. CONCLUSIONS: These results provide new insights into constraining the evolution of CRKP resistance through CS-based therapies.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Klebsiella pneumoniae/genetics , Tetracyclines/pharmacology , Tetracyclines/therapeutic use , Drug Collateral Sensitivity , Carbapenems/pharmacology , Carbapenems/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
18.
Front Cell Infect Microbiol ; 13: 1121399, 2023.
Article in English | MEDLINE | ID: mdl-36844402

ABSTRACT

Background: Oral microbiota is closely related to the homeostasis of the oral cavity and lungs. To provide potential information for the prediction, screening, and treatment strategies of individuals, this study compared and investigated the bacterial signatures in periodontitis and chronic obstructive pulmonary disease (COPD). Materials and methods: We collected subgingival plaque and gingival crevicular fluid samples from 112 individuals (31 healthy controls, 24 patients with periodontitis, 28 patients with COPD, and 29 patients with both periodontitis and COPD). The oral microbiota was analyzed using 16S rRNA gene sequencing and diversity and functional prediction analysis were performed. Results: We observed higher bacterial richness in individuals with periodontitis in both types of oral samples. Using LEfSe and DESeq2 analyses, we found differentially abundant genera that may be potential biomarkers for each group. Mogibacterium is the predominant genus in COPD. Ten genera, including Desulfovibrio, Filifactor, Fretibacterium, Moraxella, Odoribacter, Pseudoramibacter Pyramidobacter, Scardovia, Shuttleworthia and Treponema were predominant in periodontitis. Bergeyella, Lautropia, Rothia, Propionibacterium and Cardiobacterium were the signature of the healthy controls. The significantly different pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) between healthy controls and other groups were concentrated in genetic information processing, translation, replication and repair, and metabolism of cofactors and vitamins. Conclusions: We found the significant differences in the bacterial community and functional characterization of oral microbiota in periodontitis, COPD and comorbid diseases. Compared to gingival crevicular fluid, subgingival plaque may be more appropriate for reflecting the difference of subgingival microbiota in periodontitis patients with COPD. These results may provide potentials for predicting, screening, and treatment strategies for individuals with periodontitis and COPD.


Subject(s)
Chronic Periodontitis , Periodontitis , Pulmonary Disease, Chronic Obstructive , Humans , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Periodontitis/complications , Periodontitis/microbiology , Bacteria/genetics , Pulmonary Disease, Chronic Obstructive/complications , Chronic Periodontitis/microbiology
20.
Microorganisms ; 11(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36677496

ABSTRACT

Legionella pneumophila is an intracellular pathogen causing pneumonia in humans. In February 2022, Legionnaires' disease caused by L. pneumophila strain Corby in a patient with lung adenocarcinoma was identified for the first time in China. This paper includes the case report and phenotypic and genomic analysis of the Corby (ICDC) strain. Its biological characteristics were evaluated by antibiotic sensitivity testing and cytology experiments, and genomic analysis was performed to understand its genetic evolution. The patient's clinical manifestations included cough, fever, pulmonary infiltration, and significantly decreased activity endurance. After empirical antimicrobial therapy, infection indicators decreased. The Corby (ICDC) strain was susceptible to nine antibiotics and exhibited strong intracellular proliferation ability. A phylogenetic tree showed that the Corby (ICDC) strain was closely related to the Corby strain, but under the pressure of a complex environment, its genome had undergone more rearrangement and inversion. The type IF CRISPR-Cas system was identified in its genome, and spacer analysis indicated that it had been invaded by several foreign plasmids, bacteria, and viruses during evolution. Legionnaires' disease caused by L. pneumophila strain Corby may be ignored in China, and it is urgent to improve long-term monitoring and investigation of aquatic environments and patients with respiratory infections to prevent a large-scale outbreak of Legionnaires' disease.

SELECTION OF CITATIONS
SEARCH DETAIL