Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(11): e2220563120, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36893277

ABSTRACT

The transition from mafic to felsic upper continental crust (UCC) is crucial to habitability of Earth, and may be related to the onset of plate tectonics. Thus, defining when this crustal transition occurred has great significance for the evolution of Earth and its inhabitants. We demonstrate that V isotope ratios (reported as δ51V) provide insights into this transition because they correlate positively with SiO2 and negatively with MgO contents during igneous differentiation in both subduction zones and intraplate settings. Because δ51V is not affected by chemical weathering and fluid-rock interactions, δ51V of the fine-grained matrix of Archean to Paleozoic (3 to 0.3 Ga) glacial diamictite composites, which sample the UCC at the time of glaciation, reflect the chemical composition of the UCC through time. The δ51V values of glacial diamictites systematically increase with time, indicating a dominantly mafic UCC at ~3 Ga; the UCC was dominated by felsic rocks only after 3 Ga, coinciding with widespread continental emergence and many independent estimates for the onset of plate tectonics.

3.
Anal Chem ; 84(24): 10686-93, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23176404

ABSTRACT

Complete sample digestion is a prerequisite for achieving reproducible and accurate analytical results for geological samples. Open-vessel acid digestions successfully dissolve mafic samples, but this method cannot achieve complete dissolution of felsic samples, because of the presence of refractory minerals such as zircon. In this study, an efficient and simplified digestion technique using the solid compound NH(4)HF(2) in a screw-top vial has been developed for multielement analysis of different types of rock samples. NH(4)HF(2) has a higher boiling point (239.5 °C) than conventional acids such as HF, HNO(3) and HCl, which allows for an elevated digestion temperature in open vessels, enabling the decomposition of refractory phases. Similar to HF, HNO(3) and HCl, ultrapure NH(4)HF(2) can be produced using a conventional PFA sub-boiling (heating and cooling) purification system. A digestion time of 2-3 h for 200 mg NH(4)HF(2) in a Savillex Teflon vial at 230 °C is sufficient to digest 50 mg of the felsic rock GSP-2, which is ~6 times faster than using conventional closed-vessel acid digestion at 190 °C (high-pressure PTFE digestion bomb). The price of a Savillex Teflon vial is far less than the price of a high-pressure PTFE digestion bomb (consisting of a PTFE inner vessel and an outer stainless steel pressure jacket). Moreover, the NH(4)HF(2)-open-vessel acid digestion is not hampered by the formation of insoluble fluorides. We have successfully applied the NH(4)HF(2)-open-vessel acid digestion to the digestion of a series of international geological reference materials, including mafic to felsic igneous rocks and shales. This method provides an effective, simple, economical, and comparatively safe dissolution method that combines the advantages of both the open- and closed-vessel digestion methods.

SELECTION OF CITATIONS
SEARCH DETAIL