Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Adv Mater ; 34(1): e2106046, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34601757

ABSTRACT

Spin defects in hexagonal boron nitride, and specifically the negatively charged boron vacancy (VB - ) centers, are emerging candidates for quantum sensing. However, the VB - defects suffer from low quantum efficiency and, as a result, exhibit weak photoluminescence. In this work, a scalable approach is demonstrated to dramatically enhance the VB - emission by coupling to a plasmonic gap cavity. The plasmonic cavity is composed of a flat gold surface and a silver cube, with few-layer hBN flakes positioned in between. Employing these plasmonic cavities, two orders of magnitude are extracted in photoluminescence enhancement associated with a corresponding twofold enhancement in optically detected magnetic resonance contrast. The work will be pivotal to progress in quantum sensing employing 2D materials, and in realization of nanophotonic devices with spin defects in hexagonal boron nitride.

2.
Article in English | MEDLINE | ID: mdl-31532914

ABSTRACT

A late detection of pathogenic microorganisms in food and drinking water has a high potential to cause adverse health impacts in those who have ingested the pathogens. For this reason there is intense interest in developing precise, rapid and sensitive assays that can detect multiple foodborne pathogens. Such assays would be valuable components in the campaign to minimize foodborne illness. Here, we discuss the emerging types of assays based on gold nanoparticles (GNPs) for rapidly diagnosing single or multiple foodborne pathogen infections. Colorimetric and lateral flow assays based on GNPs may be read by the human eye. Refractometric sensors based on a shift in the position of a plasmon resonance absorption peak can be read by the new generation of inexpensive optical spectrometers. Surface-enhanced Raman spectroscopy and the quartz microbalance require slightly more sophisticated equipment but can be very sensitive. A wide range of electrochemical techniques are also under development. Given the range of options provided by GNPs, we confidently expect that some, or all, of these technologies will eventually enter routine use for detecting pathogens in food. This article is categorized under: Diagnostic Tools > Biosensing.


Subject(s)
Bacteriological Techniques , Colorimetry , Foodborne Diseases/microbiology , Gold , Metal Nanoparticles , Animals , Aptamers, Nucleotide , Bacteria/genetics , Bacteria/isolation & purification , Electrochemical Techniques , Humans , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL