Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Brain ; 141(3): 673-687, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29415205

ABSTRACT

Peripheral nerve axons require a well-organized axonal microtubule network for efficient transport to ensure the constant crosstalk between soma and synapse. Mutations in more than 80 different genes cause Charcot-Marie-Tooth disease, which is the most common inherited disorder affecting peripheral nerves. This genetic heterogeneity has hampered the development of therapeutics for Charcot-Marie-Tooth disease. The aim of this study was to explore whether histone deacetylase 6 (HDAC6) can serve as a therapeutic target focusing on the mutant glycyl-tRNA synthetase (GlyRS/GARS)-induced peripheral neuropathy. Peripheral nerves and dorsal root ganglia from the C201R mutant Gars mouse model showed reduced acetylated α-tubulin levels. In primary dorsal root ganglion neurons, mutant GlyRS affected neurite length and disrupted normal mitochondrial transport. We demonstrated that GlyRS co-immunoprecipitated with HDAC6 and that this interaction was blocked by tubastatin A, a selective inhibitor of the deacetylating function of HDAC6. Moreover, HDAC6 inhibition restored mitochondrial axonal transport in mutant GlyRS-expressing neurons. Systemic delivery of a specific HDAC6 inhibitor increased α-tubulin acetylation in peripheral nerves and partially restored nerve conduction and motor behaviour in mutant Gars mice. Our study demonstrates that α-tubulin deacetylation and disrupted axonal transport may represent a common pathogenic mechanism underlying Charcot-Marie-Tooth disease and it broadens the therapeutic potential of selective HDAC6 inhibition to other genetic forms of axonal Charcot-Marie-Tooth disease.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/therapy , Glycine-tRNA Ligase/genetics , Histone Deacetylase 6/metabolism , Mutation/genetics , Animals , Axonal Transport/genetics , Cells, Cultured , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Enzyme Inhibitors/therapeutic use , Ganglia, Spinal/cytology , Histone Deacetylase 6/genetics , Hydroxamic Acids/therapeutic use , Indoles/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Neurons/drug effects , Motor Neurons/metabolism , Neural Conduction/genetics , Neuromuscular Junction/pathology , Neuromuscular Junction/physiopathology , Psychomotor Performance/physiology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Tubulin/metabolism
2.
Neurobiol Dis ; 111: 59-69, 2018 03.
Article in English | MEDLINE | ID: mdl-29197621

ABSTRACT

As cancer is becoming more and more a chronic disease, a large proportion of patients is confronted with devastating side effects of certain anti-cancer drugs. The most common neurological complications are painful peripheral neuropathies. Chemotherapeutics that interfere with microtubules, including plant-derived vinca-alkaloids such as vincristine, can cause these chemotherapy-induced peripheral neuropathies (CIPN). Available treatments focus on symptom alleviation and pain reduction rather than prevention of the neuropathy. The aim of this study was to investigate the potential of specific histone deacetylase 6 (HDAC6) inhibitors as a preventive therapy for CIPN using multiple rodent models for vincristine-induced peripheral neuropathies (VIPN). HDAC6 inhibition increased the levels of acetylated α-tubulin in tissues of rodents undergoing vincristine-based chemotherapy, which correlates to a reduced severity of the neurological symptoms, both at the electrophysiological and the behavioral level. Mechanistically, disturbances in axonal transport of mitochondria is considered as an important contributing factor in the pathophysiology of VIPN. As vincristine interferes with the polymerization of microtubules, we investigated whether disturbances in axonal transport could contribute to VIPN. We observed that increasing α-tubulin acetylation through HDAC6 inhibition restores vincristine-induced defects of axonal transport in cultured dorsal root ganglion neurons. Finally, we assured that HDAC6-inhibition offers neuroprotection without interfering with the anti-cancer efficacy of vincristine using a mouse model for acute lymphoblastic leukemia. Taken together, our results emphasize the therapeutic potential of HDAC6 inhibitors with beneficial effects both on vincristine-induced neurotoxicity, as well as on tumor proliferation.


Subject(s)
Antineoplastic Agents/adverse effects , Histone Deacetylase 6/antagonists & inhibitors , Neoplasms/drug therapy , Neuroprotective Agents/pharmacology , Peripheral Nervous System Diseases/drug therapy , Vincristine/adverse effects , Animals , Antineoplastic Agents/pharmacology , Axonal Transport/drug effects , Cells, Cultured , Disease Models, Animal , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/pharmacology , Male , Mice, Inbred NOD , Mice, SCID , Microtubules/drug effects , Microtubules/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasms/enzymology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/enzymology , Tubulin/metabolism
3.
Nat Commun ; 8(1): 861, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021520

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder due to selective loss of motor neurons (MNs). Mutations in the fused in sarcoma (FUS) gene can cause both juvenile and late onset ALS. We generated and characterized induced pluripotent stem cells (iPSCs) from ALS patients with different FUS mutations, as well as from healthy controls. Patient-derived MNs show typical cytoplasmic FUS pathology, hypoexcitability, as well as progressive axonal transport defects. Axonal transport defects are rescued by CRISPR/Cas9-mediated genetic correction of the FUS mutation in patient-derived iPSCs. Moreover, these defects are reproduced by expressing mutant FUS in human embryonic stem cells (hESCs), whereas knockdown of endogenous FUS has no effect, confirming that these pathological changes are mutant FUS dependent. Pharmacological inhibition as well as genetic silencing of histone deacetylase 6 (HDAC6) increase α-tubulin acetylation, endoplasmic reticulum (ER)-mitochondrial overlay, and restore the axonal transport defects in patient-derived MNs.Amyotrophic lateral sclerosis (ALS) leads to selective loss of motor neurons. Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Axonal Transport , Histone Deacetylase 6/metabolism , Motor Neurons/metabolism , RNA-Binding Protein FUS/genetics , Adolescent , Adult , Aged , CRISPR-Cas Systems , Female , Histone Deacetylase 6/antagonists & inhibitors , Humans , Hydroxamic Acids , Indoles , Induced Pluripotent Stem Cells , Male , Point Mutation , Primary Cell Culture , Pyrimidines
SELECTION OF CITATIONS
SEARCH DETAIL