Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Eur J Oper Res ; 310(3): 1249-1272, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37284206

ABSTRACT

The emergence of the SARS-CoV-2 virus and new viral variations with higher transmission and mortality rates have highlighted the urgency to accelerate vaccination to mitigate the morbidity and mortality of the COVID-19 pandemic. For this purpose, this paper formulates a new multi-vaccine, multi-depot location-inventory-routing problem for vaccine distribution. The proposed model addresses a wide variety of vaccination concerns: prioritizing age groups, fair distribution, multi-dose injection, dynamic demand, etc. To solve large-size instances of the model, we employ a Benders decomposition algorithm with a number of acceleration techniques. To monitor the dynamic demand of vaccines, we propose a new adjusted susceptible-infectious-recovered (SIR) epidemiological model, where infected individuals are tested and quarantined. The solution to the optimal control problem dynamically allocates the vaccine demand to reach the endemic equilibrium point. Finally, to illustrate the applicability and performance of the proposed model and solution approach, the paper reports extensive numerical experiments on a real case study of the vaccination campaign in France. The computational results show that the proposed Benders decomposition algorithm is 12 times faster, and its solutions are, on average, 16% better in terms of quality than the Gurobi solver under a limited CPU time. In terms of vaccination strategies, our results suggest that delaying the recommended time interval between doses of injection by a factor of 1.5 reduces the unmet demand up to 50%. Furthermore, we observed that the mortality is a convex function of fairness and an appropriate level of fairness should be adapted through the vaccination.

2.
Ann Oper Res ; 292(2): 753-770, 2020.
Article in English | MEDLINE | ID: mdl-32863516

ABSTRACT

With the increasing presence of renewable energy sources in the electrical power grid, demand response via thermostatic appliances such as electric water heaters is a promising way to compensate for the significant variability in renewable power generation. We propose a multistage stochastic optimization model that computes the optimal day-ahead target profile of the mean thermal energy contained in a large population of heaters, given various possible wind power production and uncontrollable load scenarios. This optimal profile is calculated to make the variable net demand as even as possible.

3.
Phys Med Biol ; 64(8): 085008, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30790784

ABSTRACT

Volumetric-modulated arc therapy (VMAT) treatment planning is an efficient treatment technique with a high degree of flexibility in terms of dose rate, gantry speed, and aperture shapes during rotation around the patient. However, the dynamic nature of VMAT results in a large-scale nonconvex optimization problem. Determining the priority of the tissues and voxels to obtain clinically acceptable treatment plans poses additional challenges for VMAT optimization. The main purpose of this paper is to develop an automatic planning approach integrating dose-volume histogram (DVH) criteria in direct aperture optimization for VMAT, by adjusting the model parameters during the algorithm. The proposed algorithm is based on column generation, an optimization technique that sequentially generates the apertures and optimizes the corresponding intensities. We take the advantage of iterative procedure in this method to modify the weight vector of the penalty function based on the DVH criteria and decrease the use of trial-and-error in the search for clinically acceptable plans. We evaluate the efficiency of the algorithm and treatment quality using a clinical prostate case and a challenging head-and-neck case. In both cases, we generate 15 random initial weight vectors to assess the robustness of the algorithm. In the prostate case, our methodology obtained clinically acceptable plans in all instances with only a 10% increase in the computational time, while simple VMAT optimization found just three acceptable plans. To have an idea with respect to the existing software, we compared the obtained DVH to a commercial software. The quality of the diagrams of the proposed method, especially for the healthy tissues, is significantly better while the computational time is less. In the head-and-neck case, 93.3% of the clinically acceptable plans are obtained while no plan was acceptable in simple VMAT. In sum, the results demonstrate the ability of the proposed optimization algorithm to obtain clinically acceptable plans without human intervention and also its robustness to weight parameters. Moreover, our proposed weight adjustment procedure proves to reduce the symmetry in the solution space and the time required for the post-optimization phase.


Subject(s)
Algorithms , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
4.
Phys Med Biol ; 62(14): 5589-5611, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28524822

ABSTRACT

In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation , Software , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL