Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Cancer Discov ; 14(10): 1901-1921, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39073085

ABSTRACT

Iron accumulation in tumors contributes to disease progression and chemoresistance. Although targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells toward an immunostimulatory state characterized by the production of type-I IFN and overexpression of molecules that activate NK cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type-I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T-cell-centric modalities. Significance: This study uncovers that targeting dysregulated iron accumulation in ovarian tumors represents a major therapeutic opportunity. Iron chelation therapy using an FDA-approved agent causes immunogenic stress responses in ovarian cancer cells that delay metastatic disease progression and enhance the effects of first-line chemotherapy. See related commentary by Bell and Zou, p. 1771.


Subject(s)
Immunity, Innate , Iron Chelating Agents , Ovarian Neoplasms , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Humans , Animals , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/pharmacology , Mice , Immunity, Innate/drug effects , Cell Line, Tumor , Deferiprone/therapeutic use , Deferiprone/pharmacology , Neoplasm Metastasis , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Tumor Microenvironment/drug effects
2.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798541

ABSTRACT

The skin integrates diverse signals discerned by sensory neurons and immune cells to elicit adaptive responses to a range of stresses. Considering interactions between nervous and immune systems, we questioned whether regulatory T cells (Treg cells), a T cell subset that suppresses systemic and local inflammation, can modulate activation of peripheral neurons. Short-term ablation of Treg cells increased neuronal activation to noxious stimuli independently from immunosuppressive function. We find that a population of skin Treg cells is highly enriched for Penk expression, a precursor for endogenous opioid enkephalins. Acute depletion of Penk-expressing Treg cells, or cell-specific ablation of Penk in Treg cells increases neuronal activation in response to noxious stimuli and associated inflammation. Our study indicates that a population of Treg cells exhibits neuromodulatory activity to restrain inflammation.

3.
Nat Commun ; 14(1): 120, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624093

ABSTRACT

IRE1α-XBP1 signaling is emerging as a central orchestrator of malignant progression and immunosuppression in various cancer types. Employing a computational XBP1s detection method applied to TCGA datasets, we demonstrate that expression of the XBP1s mRNA isoform predicts poor survival in non-small cell lung cancer (NSCLC) patients. Ablation of IRE1α in malignant cells delays tumor progression and extends survival in mouse models of NSCLC. This protective effect is accompanied by alterations in intratumoral immune cell subsets eliciting durable adaptive anti-cancer immunity. Mechanistically, cancer cell-intrinsic IRE1α activation sustains mPGES-1 expression, enabling production of the immunosuppressive lipid mediator prostaglandin E2. Accordingly, restoring mPGES-1 expression in IRE1αKO cancer cells rescues normal tumor progression. We have developed an IRE1α gene signature that predicts immune cell infiltration and overall survival in human NSCLC. Our study unveils an immunoregulatory role for cancer cell-intrinsic IRE1α activation and suggests that targeting this pathway may help enhance anti-tumor immunity in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Endoribonucleases , Lung Neoplasms , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Lung Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
4.
Cancer Discov ; 12(8): 1904-1921, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35552618

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer. Ablation of the LPA-generating enzyme autotaxin (ATX) in ovarian cancer cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in patients with ovarian cancer. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type I IFN. SIGNIFICANCE: This study uncovers that ATX-LPA is a central immunosuppressive pathway in the ovarian tumor microenvironment. Ablating this axis sensitizes ovarian cancer hosts to various immunotherapies by unleashing protective type I IFN responses. Understanding the immunoregulatory programs induced by LPA could lead to new biomarkers predicting resistance to immunotherapy in patients with cancer. See related commentary by Conejo-Garcia and Curiel, p. 1841. This article is highlighted in the In This Issue feature, p. 1825.


Subject(s)
Interferon Type I , Lysophospholipids , Ovarian Neoplasms , Female , Humans , Lysophospholipids/genetics , Lysophospholipids/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Tumor Microenvironment
5.
Cell Rep ; 35(9): 109210, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34077737

ABSTRACT

Natural killer (NK) cells are cytotoxic lymphocytes capable of rapid cytotoxicity, cytokine secretion, and clonal expansion. To sustain such energetically demanding processes, NK cells must increase their metabolic capacity upon activation. However, little is known about the metabolic requirements specific to NK cells in vivo. To gain greater insight, we investigated the role of aerobic glycolysis in NK cell function and demonstrate that their glycolytic rate increases rapidly following viral infection and inflammation, prior to that of CD8+ T cells. NK cell-specific deletion of lactate dehydrogenase A (LDHA) reveals that activated NK cells rely on this enzyme for both effector function and clonal proliferation, with the latter being shared with T cells. As a result, LDHA-deficient NK cells are defective in their anti-viral and anti-tumor protection. These findings suggest that aerobic glycolysis is a hallmark of NK cell activation that is key to their function.


Subject(s)
Glycolysis , Killer Cells, Natural/immunology , Lactate Dehydrogenase 5/metabolism , Muromegalovirus/immunology , Neoplasms/immunology , Aerobiosis , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Clone Cells , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/virology , Homeostasis , Mice, Inbred C57BL , Neoplasms/pathology , Up-Regulation
6.
Science ; 365(6450)2019 07 19.
Article in English | MEDLINE | ID: mdl-31320508

ABSTRACT

Inositol-requiring enzyme 1[α] (IRE1[α])-X-box binding protein spliced (XBP1) signaling maintains endoplasmic reticulum (ER) homeostasis while controlling immunometabolic processes. Yet, the physiological consequences of IRE1α-XBP1 activation in leukocytes remain unexplored. We found that induction of prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2) and prostaglandin E synthase (Ptges/mPGES-1) was compromised in IRE1α-deficient myeloid cells undergoing ER stress or stimulated through pattern recognition receptors. Inducible biosynthesis of prostaglandins, including the pro-algesic mediator prostaglandin E2 (PGE2), was decreased in myeloid cells that lack IRE1α or XBP1 but not other ER stress sensors. Functional XBP1 transactivated the human PTGS2 and PTGES genes to enable optimal PGE2 production. Mice that lack IRE1α-XBP1 in leukocytes, or that were treated with IRE1α inhibitors, demonstrated reduced pain behaviors in PGE2-dependent models of pain. Thus, IRE1α-XBP1 is a mediator of prostaglandin biosynthesis and a potential target to control pain.


Subject(s)
Dinoprostone/biosynthesis , Endoribonucleases/metabolism , Leukocytes/metabolism , Pain, Postoperative/metabolism , Protein Serine-Threonine Kinases/metabolism , Visceral Pain/metabolism , X-Box Binding Protein 1/metabolism , Animals , Cells, Cultured , Cyclooxygenase 2/genetics , Endoribonucleases/genetics , Humans , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Pain, Postoperative/genetics , Promoter Regions, Genetic , Prostaglandin-E Synthases/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Unfolded Protein Response , Visceral Pain/genetics , X-Box Binding Protein 1/genetics
7.
Trends Immunol ; 40(8): 699-718, 2019 08.
Article in English | MEDLINE | ID: mdl-31301952

ABSTRACT

Dendritic cells (DCs) are fundamental for the initiation and maintenance of immune responses against malignant cells. Despite the unique potential of DCs to elicit robust anticancer immunity, the tumor microenvironment poses a variety of challenges that hinder competent DC function and consequently inhibit the development of protective immune responses. Here, we discuss recent studies uncovering new molecular pathways and metabolic programs that tumors manipulate in DCs to disturb their homeostasis and evade immune control. We also examine certain state-of-the-art strategies that seek to improve DC function and elicit antitumor responses in hosts with cancer. Understanding and modulating DC metabolism and activity within tumors might help improve the efficacy of T cell-centric immunotherapies.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Susceptibility , Energy Metabolism , Neoplasms/etiology , Neoplasms/metabolism , Amino Acids/metabolism , Animals , Cellular Reprogramming , Disease Susceptibility/immunology , Glycolysis , Humans , Immunomodulation , Lipid Metabolism , Mice , Neoplasms/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL