Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters








Publication year range
1.
Nat Commun ; 15(1): 8731, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384759

ABSTRACT

Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal delivery of surface and extracellular targets while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.


Subject(s)
ErbB Receptors , Lysosomes , Proteolysis , Receptors, Transferrin , Humans , Proteolysis/drug effects , Receptors, Transferrin/metabolism , Animals , Cell Line, Tumor , ErbB Receptors/metabolism , Lysosomes/metabolism , Mice , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Hydrogen-Ion Concentration , B7-H1 Antigen/metabolism , Female , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Catalysis , Endosomes/metabolism , Xenograft Model Antitumor Assays
2.
NAR Cancer ; 6(2): zcae021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774470

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. To identify genes differentially required for the viability of GBM stem-like cells (GSCs), we performed functional genomic lethality screens comparing GSCs and control human neural stem cells. Among top-scoring hits in a subset of GBM cells was the F-box-containing gene FBXO42, which was also predicted to be essential in ∼15% of cell lines derived from a broad range of cancers. Mechanistic studies revealed that, in sensitive cells, FBXO42 activity prevents chromosome alignment defects, mitotic cell cycle arrest and cell death. The cell cycle arrest, but not the cell death, triggered by FBXO42 inactivation could be suppressed by brief exposure to a chemical inhibitor of Mps1, a key spindle assembly checkpoint (SAC) kinase. FBXO42's cancer-essential function requires its F-box and Kelch domains, which are necessary for FBXO42's substrate recognition and targeting by SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex. However, none of FBXO42's previously proposed targets, including ING4, p53 and RBPJ, were responsible for the observed phenotypes. Instead, our results suggest that FBOX42 alters the activity of one or more proteins that perturb chromosome-microtubule dynamics in cancer cells, which in turn leads to induction of the SAC and cell death.

3.
bioRxiv ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38712232

ABSTRACT

Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a novel catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal target delivery while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.

4.
Heliyon ; 10(7): e28583, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586421

ABSTRACT

NKG2D and its ligands are critical regulators of protective immune responses controlling infections and cancer, defining a crucial immune signaling axis. Current therapeutic efforts targeting this axis almost exclusively aim at enhancing NKG2D-mediated effector functions. However, this axis can drive disease processes when dysregulated, in particular, driving stem-like cancer cell reprogramming and tumorigenesis through receptor/ligand self-stimulation on tumor cells. Despite complexities with its structure and biology, we developed multiple novel engineered proteins that functionally serve as axis-blocking NKG2D "decoys" and report biochemical, structural, in vitro, and in vivo evaluation of their functionality.

5.
Neuro Oncol ; 26(2): 226-235, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37713135

ABSTRACT

Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Humans , Child , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Immunotherapy , Central Nervous System Neoplasms/therapy
6.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693598

ABSTRACT

Hydrogels generally have broad utilization in healthcare due to their tunable structures, high water content, and inherent biocompatibility. FDA-approved applications of hydrogels include spinal cord regeneration, skin fillers, and local therapeutic delivery. Drawbacks exist in the clinical hydrogel space, largely pertaining to inconsistent therapeutic exposure, short-lived release windows, and difficulties inserting the polymer into tissue. In this study, we engineered injectable, biocompatible hydrogels that function as a local protein therapeutic depot with a high degree of user-customizability. We showcase a PEG-based hydrogel functionalized with bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) handles for its polymerization and functionalization with a variety of payloads. Small-molecule and protein cargos, including chemokines and antibodies, were site-specifically modified with hydrolysable "azidoesters" of varying hydrophobicity via direct chemical conjugation or sortase-mediated transpeptidation. These hydrolysable esters afforded extended release of payloads linked to our hydrogels beyond diffusion; with timescales spanning days to months dependent on ester hydrophobicity. Injected hydrogels polymerize in situ and remain in tissue over extended periods of time. Hydrogel-delivered protein payloads elicit biological activity after being modified with SPAAC-compatible linkers, as demonstrated by the successful recruitment of murine T-cells to a mouse melanoma model by hydrolytically released murine CXCL10. These results highlight a highly versatile, customizable hydrogel-based delivery system for local delivery of protein therapeutics with payload release profiles appropriate for a variety of clinical needs.

7.
Front Oncol ; 13: 1123492, 2023.
Article in English | MEDLINE | ID: mdl-36937401

ABSTRACT

Introduction: Ependymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion. Methods: Patient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. Results: Both patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo. Discussion: Others who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.

8.
bioRxiv ; 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36711964

ABSTRACT

Background: Adult and pediatric tumors display stark differences in their mutation spectra and chromosome alterations. Here, we attempted to identify common and unique gene dependencies and their associated biomarkers among adult and pediatric tumor isolates using functional genetic lethal screens and computational modeling. Methods: We performed CRISRP-Cas9 lethality screens in two adult glioblastoma (GBM) tumor isolates and five pediatric brain tumor isolates representing atypical teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and medulloblastoma. We then integrated the screen results with machine learning-based gene-dependency models generated from data from >900 cancer cell lines. Results: We found that >50% of candidate dependencies of 280 identified were shared between adult GBM tumors and individual pediatric tumor isolates. 68% of screen hits were found as nodes in our network models, along with shared and tumor-specific predictors of gene dependencies. We investigated network predictors associated with ADAR, EFR3A, FGFR1 (pediatric-specific), and SMARCC2 (ATRT-specific) gene dependency among our tumor isolates. Conclusions: The results suggest that, despite harboring disparate genomic signatures, adult and pediatric tumor isolates share a preponderance of genetic dependences. Further, combining data from primary brain tumor lethality screens with large cancer cell line datasets produced valuable insights into biomarkers of gene dependency, even for rare cancers. Importance of the Study: Our results demonstrate that large cancer cell lines data sets can be computationally mined to identify known and novel gene dependency relationships in adult and pediatric human brain tumor isolates. Gene dependency networks and lethality screen results represent a key resource for neuro-oncology and cancer research communities. We also highlight some of the challenges and limitations of this approach.

9.
Sci Transl Med ; 14(645): eabn0402, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35584229

ABSTRACT

Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.


Subject(s)
Antibodies, Bispecific , T-Lymphocytes , Animals , Humans , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , B7-H1 Antigen , CD3 Complex , Cystine , Disease Models, Animal , Mammals , Peptides
10.
J Neurooncol ; 153(2): 225-237, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33963961

ABSTRACT

PURPOSE: Tumor infiltration by immunosuppressive myeloid cells or tumor-associated macrophages (TAMs) contributes to tumor progression and metastasis. In contrast to their adult counterparts, higher TAM signatures do not correlate with aggressive tumor behavior in pediatric brain tumors. While prominent TAM infiltrates exist before and after radiation, the degree to which irradiated macrophages and microglia support progression or leptomeningeal metastasis remains unclear. Patients with medulloblastoma often present with distant metastases and tumor recurrence is largely incurable, making them prime candidates for the study of novel approaches to prevent neuroaxis dissemination and recurrence. METHODS: Macrophage depletion was achieved using CSF-1 receptor inhibitors (CSF-1Ri), BLZ945 and AFS98, with or without whole brain radiation in a variety of medulloblastoma models, including patient-derived xenografts bearing Group 3 medulloblastoma and a transgenic Sonic Hedgehog (Ptch1+/-, Trp53-/-) medulloblastoma model. RESULTS: Effective reduction of microglia, TAM, and spinal cord macrophage with CSF-1Ri resulted in negligible effects on the rate of local and spinal recurrences or survival following radiation. Results were comparable between medulloblastoma subgroups. While notably few tumor-infiltrating lymphocytes (TILs) were detected, average numbers of CD3+ TILs and FoxP3+ Tregs did not differ between groups following treatment and tumor aggressiveness by Ki67 proliferation index was unaltered. CONCLUSION: In the absence of other microenvironmental influences, medulloblastoma-educated macrophages do not operate as tumor-supportive cells or promote leptomeningeal recurrence in these models. Our data add to a growing body of literature describing a distinct immunophenotype amid the medulloblastoma microenvironment and highlight the importance of appropriate pediatric modeling prior to clinical translation.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Signal Transduction , Child , Hedgehog Proteins , Humans , Macrophage Colony-Stimulating Factor , Macrophages , Receptor Protein-Tyrosine Kinases , Receptor, Macrophage Colony-Stimulating Factor , Tumor Microenvironment
11.
Neuro Oncol ; 23(3): 376-386, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33130903

ABSTRACT

BACKGROUND: Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine gliomas (DIPGs), have a dismal prognosis, with less than 2% surviving 5 years postdiagnosis. The majority of DIPGs and all DMGs harbor mutations altering the epigenetic regulatory histone tail (H3 K27M). Investigations addressing DMG epigenetics have identified a few promising drugs, including the HDAC inhibitor (HDACi) panobinostat. Here, we use clinically relevant DMG models to identify and validate other effective HDACi and their biomarkers of response. METHODS: HDAC inhibitors were tested across biopsy-derived treatment-naïve in vitro and in vivo DMG models with biologically relevant radiation resistance. RNA sequencing was performed to define and compare drug efficacy and to map predictive biomarkers of response. RESULTS: Quisinostat and romidepsin showed efficacy with low nanomolar half-maximal inhibitory concentration (IC50) values (~50 and ~5 nM, respectively). Comparative transcriptome analyses across quisinostat, romidepsin, and panobinostat showed a greater degree of shared biological effects between quisinostat and panobinostat, and less overlap with romidepsin. However, some transcriptional changes were consistent across all 3 drugs at similar biologically effective doses, such as overexpression of troponin T1 slow skeletal type (TNNT1) and downregulation of collagen type 20 alpha 1 chain (COL20A1), identifying these as potential vulnerabilities or on-target biomarkers in DMG. Quisinostat and romidepsin significantly (P < 0.0001) inhibited in vivo tumor growth. CONCLUSIONS: Our data highlight the utility of treatment-naïve biopsy-derived models; establishes quisinostat and romidepsin as effective in vivo; illuminates potential mechanisms and/or biomarkers of DMG cell lethality due to HDAC inhibition; and emphasizes the need for brain tumor-penetrant versions of potentially efficacious agents.


Subject(s)
Brain Stem Neoplasms , Glioma , Biopsy , Glioma/drug therapy , Glioma/genetics , Histones/genetics , Humans , Mutation , Panobinostat
12.
Sci Transl Med ; 12(533)2020 03 04.
Article in English | MEDLINE | ID: mdl-32132215

ABSTRACT

On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints. A cartilage-accumulating peptide, CDP-11R, reached peak concentration in cartilage within 30 min after administration and remained detectable for more than 4 days. Structural analysis of the peptides by crystallography revealed that the distribution of positive charge may be a distinguishing feature of joint-accumulating CDPs. In addition, quantitative whole-body autoradiography showed that the disulfide-bonded tertiary structure is critical for cartilage accumulation and retention. CDP-11R distributed to joints while carrying a fluorophore imaging agent or one of two different steroid payloads, dexamethasone (dex) and triamcinolone acetonide (TAA). Of the two payloads, the dex conjugate did not advance because the free drug released into circulation was sufficient to cause on-target toxicity. In contrast, the CDP-11R-TAA conjugate alleviated joint inflammation in the rat collagen-induced model of rheumatoid arthritis while avoiding toxicities that occurred with nontargeted steroid treatment at the same molar dose. This conjugate shows promise for clinical development and establishes proof of concept for multijoint targeting of disease-modifying therapeutic payloads.


Subject(s)
Arthritis, Experimental , Adrenal Cortex Hormones , Animals , Arthritis, Experimental/drug therapy , Cartilage , Humans , Peptides , Rats , Steroids
13.
Cancer Cell ; 36(3): 302-318.e7, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31474569

ABSTRACT

Progenitor heterogeneity and identities underlying tumor initiation and relapse in medulloblastomas remain elusive. Utilizing single-cell transcriptomic analysis, we demonstrated a developmental hierarchy of progenitor pools in Sonic Hedgehog (SHH) medulloblastomas, and identified OLIG2-expressing glial progenitors as transit-amplifying cells at the tumorigenic onset. Although OLIG2+ progenitors become quiescent stem-like cells in full-blown tumors, they are highly enriched in therapy-resistant and recurrent medulloblastomas. Depletion of mitotic Olig2+ progenitors or Olig2 ablation impeded tumor initiation. Genomic profiling revealed that OLIG2 modulates chromatin landscapes and activates oncogenic networks including HIPPO-YAP/TAZ and AURORA-A/MYCN pathways. Co-targeting these oncogenic pathways induced tumor growth arrest. Together, our results indicate that glial lineage-associated OLIG2+ progenitors are tumor-initiating cells during medulloblastoma tumorigenesis and relapse, suggesting OLIG2-driven oncogenic networks as potential therapeutic targets.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Medulloblastoma/genetics , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/pathology , Neuroglia/pathology , Animals , Brain Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/pathology , Child, Preschool , Datasets as Topic , Disease Models, Animal , Female , Gene Knockdown Techniques , Gene Regulatory Networks , Hedgehog Proteins/metabolism , Humans , Male , Medulloblastoma/mortality , Medulloblastoma/pathology , Mice, Transgenic , Neoplasm Recurrence, Local/pathology , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/metabolism , Prognosis , RNA-Seq , Signal Transduction/genetics , Single-Cell Analysis , Survival Analysis , Transcriptome
14.
J Med Imaging (Bellingham) ; 6(2): 025005, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31093519

ABSTRACT

Although a greater extent of tumor resection is important for patients' survival, complete tumor removal, especially tumor margins, remains challenging due to the lack of sensitivity and specificity of current surgical guidance techniques at the margins. Intraoperative fluorescence imaging with targeted fluorophores is promising for tumor margin delineation. To verify the tumor margins detected by the fluorescence images, it is necessary to register fluorescence with histological images, which provide the ground truth for tumor regions. However, current registration methods compare fluorescence images to a single-layer histological slide, which is selected subjectively and represents a single plane of the three-dimensional tumor. A multistep pipeline is established to correlate fluorescence images to stacked histological images, including fluorescence calibration and multistep registration. Multiple histological slices are integrated as a two-dimensional (2-D) tumor map using optical attenuation model and average intensity projection. A BLZ-100-labeled medulloblastoma mouse model is used to test the whole framework. On average, the synthesized 2-D tumor map outperforms the selected best slide as ground truth [Dice similarity coefficient (DSC): 0.582 versus 0.398, with significant differences; mean area under the curve (AUC) of the receiver operating characteristic curve: 88% versus 85.5%] and the randomly selected slide as ground truth (DSC: 0.582 versus 0.396 with significant differences; mean AUC: 88% versus 84.1% with significant differences), which indicates our pipeline is reliable and can be applied to investigate targeted fluorescence probes in tumor margin detection. Following this proposed pipeline, BLZ-100 shows enhancement in both tumor cores and tumor margins (mean target-to-background ratio: 8.64 ± 5.76 and 4.82 ± 2.79 , respectively).

15.
Nat Med ; 24(11): 1752-1761, 2018 11.
Article in English | MEDLINE | ID: mdl-30349086

ABSTRACT

Brain tumors are the leading cause of cancer-related death in children. Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors that may lead to novel therapeutic strategies. To evaluate new treatments, better preclinical models adequately reflecting the biological heterogeneity are needed. Through the Children's Oncology Group ACNS02B3 study, we have generated and comprehensively characterized 30 patient-derived orthotopic xenograft models and seven cell lines representing 14 molecular subgroups of pediatric brain tumors. Patient-derived orthotopic xenograft models were found to be representative of the human tumors they were derived from in terms of histology, immunohistochemistry, gene expression, DNA methylation, copy number, and mutational profiles. In vivo drug sensitivity of targeted therapeutics was associated with distinct molecular tumor subgroups and specific genetic alterations. These models and their molecular characterization provide an unprecedented resource for the cancer community to study key oncogenic drivers and to evaluate novel treatment strategies.


Subject(s)
Biological Specimen Banks , Brain Neoplasms/pathology , Immunohistochemistry , Xenograft Model Antitumor Assays/methods , Animals , Cell Line, Tumor , Child , Child, Preschool , DNA Methylation/genetics , Female , Genomics , Humans , Male , Mice , Mutation , Pediatrics
16.
Anticancer Res ; 38(1): 51-60, 2018 01.
Article in English | MEDLINE | ID: mdl-29277756

ABSTRACT

BACKGROUND/AIM: Developments in imaging have improved cancer diagnosis, but identification of malignant cells during surgical resection remains a challenge. The aim of this study was to investigate the pacifastin family of peptides for novel activity targeting tumor cells and the delivery of either imaging or therapeutic agents. MATERIALS AND METHODS: Variants of pacifastin family peptides were generated, chemically modified and tested in human tumor xenografts. RESULTS: A tumor-homing peptide-dye conjugate (THP1) accumulated in tumors in vivo and was internalized into cells. Examination of related peptides revealed residues critical for accumulation and allowed the engineering of improved tumor-targeting variants. A THP1-drug conjugate carrying the microtubule inhibitor, MMAE, showed limited activity in vitro and no difference compared to vehicle control in vivo. CONCLUSION: Although there are some obstacles to developing pacifastin-derived peptides for therapeutic activity, these optimized peptides have great promise for cancer imaging.


Subject(s)
Neoplasms/diagnostic imaging , Peptides/therapeutic use , Proteins , Animals , Autoradiography , Cell Line, Tumor , Cell Survival/drug effects , Humans , Mice, Nude , Microscopy, Confocal , Neoplasms/drug therapy , Peptides/pharmacology , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use
17.
Oncotarget ; 8(30): 48545-48562, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28596487

ABSTRACT

Zinc finger domain genes comprise ~3% of the human genome, yet many of their functions remain unknown. Here we investigated roles for the vertebrate-specific BTB domain zinc finger gene ZNF131 in the context of human brain tumors. We report that ZNF131 is broadly required for Glioblastoma stem-like cell (GSC) viability, but dispensable for neural progenitor cell (NPC) viability. Examination of gene expression changes after ZNF131 knockdown (kd) revealed that ZNF131 activity notably promotes expression of Joubert Syndrome ciliopathy genes, including KIF7, NPHP1, and TMEM237, as well as HAUS5, a component of Augmin/HAUS complex that facilitates microtubule nucleation along the mitotic spindle. Of these genes only kd of HAUS5 displayed GSC-specific viability loss. Critically, HAUS5 ectopic expression was sufficient to suppress viability defects of ZNF131 kd cells. Moreover, ZNF131 and HAUS5 kd phenocopied each other in GSCs, each causing: mitotic arrest, centrosome fragmentation, loss of Augmin/HAUS complex on the mitotic spindle, and loss of GSC self-renewal and tumor formation capacity. In control NPCs, we observed centrosome fragmentation and lethality only when HAUS5 kd was combined with kd of HAUS2 or HAUS4, demonstrating that the complex is essential in NPCs, but that GSCs have heightened requirement. Our results suggest that GSCs differentially rely on ZNF131-dependent expression of HAUS5 as well as the Augmin/HAUS complex activity to maintain the integrity of centrosome function and viability.


Subject(s)
Brain Neoplasms/genetics , Centrosome/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Neoplastic Stem Cells/metabolism , Transcription Factors/genetics , Brain Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Self Renewal/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , DNA-Binding Proteins/metabolism , Gene Knockdown Techniques , Glioblastoma/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Binding , Spindle Apparatus/metabolism , Transcription Factors/metabolism
18.
Cell Rep ; 13(11): 2425-2439, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26673326

ABSTRACT

To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.


Subject(s)
CRISPR-Cas Systems/genetics , Cell Cycle Proteins/genetics , Genome, Human , Membrane Proteins/genetics , Neoplastic Stem Cells/metabolism , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Cyclin B/metabolism , ErbB Receptors/metabolism , Gene Library , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Microscopy, Video , Mitosis , Neoplastic Stem Cells/cytology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrimidinones , RNA Interference , Time-Lapse Imaging , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
Sci Transl Med ; 7(284): 284ra58, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25904742

ABSTRACT

A fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology platform called CIVO, which enables simultaneous assessment of up to eight drugs or drug combinations within a single solid tumor in vivo. The platform is currently designed for use in animal models of cancer and patients with superficial tumors but can be modified for investigation of deeper-seated malignancies. In xenograft lymphoma models, CIVO microinjection of well-characterized anticancer agents (vincristine, doxorubicin, mafosfamide, and prednisolone) induced spatially defined cellular changes around sites of drug exposure, specific to the known mechanisms of action of each drug. The observed localized responses predicted responses to systemically delivered drugs in animals. In pair-matched lymphoma models, CIVO correctly demonstrated tumor resistance to doxorubicin and vincristine and an unexpected enhanced sensitivity to mafosfamide in multidrug-resistant lymphomas compared with chemotherapy-naïve lymphomas. A CIVO-enabled in vivo screen of 97 approved oncology agents revealed a novel mTOR (mammalian target of rapamycin) pathway inhibitor that exhibits significantly increased tumor-killing activity in the drug-resistant setting compared with chemotherapy-naïve tumors. Finally, feasibility studies to assess the use of CIVO in human and canine patients demonstrated that microinjection of drugs is toxicity-sparing while inducing robust, easily tracked, drug-specific responses in autochthonous tumors, setting the stage for further application of this technology in clinical trials.


Subject(s)
Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor/methods , Lymphoma/drug therapy , Neoplasms/drug therapy , Animals , Biomarkers , Cell Line, Tumor , Cyclophosphamide/analogs & derivatives , Cyclophosphamide/chemistry , Dogs , Doxorubicin/chemistry , Drug Delivery Systems , Drug Resistance, Neoplasm/drug effects , Humans , Mice , Mice, Nude , Mice, SCID , Neoplasm Transplantation , Prednisolone/chemistry , TOR Serine-Threonine Kinases/metabolism , Vincristine/chemistry
20.
J Biomed Opt ; 19(7): 76014, 2014.
Article in English | MEDLINE | ID: mdl-25027002

ABSTRACT

Fluorescence molecular imaging with exogenous probes improves specificity for the detection of diseased tissues by targeting unambiguous molecular signatures. Additionally, increased diagnostic sensitivity is expected with the application of multiple molecular probes. We developed a real-time multispectral fluorescence-reflectance scanning fiber endoscope (SFE) for wide-field molecular imaging of fluorescent dye-labeled molecular probes at nanomolar detection levels. Concurrent multichannel imaging with the wide-field SFE also allows for real-time mitigation of the background autofluorescence (AF) signal, especially when fluorescein, a U.S. Food and Drug Administration approved dye, is used as the target fluorophore. Quantitative tissue AF was measured for the ex vivo porcine esophagus and murine brain tissues across the visible and nearinfrared spectra. AF signals were then transferred to the unit of targeted fluorophore concentration to evaluate the SFE detection sensitivity for sodium fluorescein and cyanine. Next, we demonstrated a real-time AF mitigation algorithm on a tissue phantom, which featured molecular probe targeted cells of high-grade dysplasia on a substrate containing AF species. The target-to-background ratio was enhanced by more than one order of magnitude when applying the real-time AF mitigation algorithm. Furthermore, a quantitative estimate of the fluorescein photodegradation (photobleaching) rate was evaluated and shown to be insignificant under the illumination conditions of SFE. In summary, the multichannel laser-based flexible SFE has demonstrated the capability to provide sufficient detection sensitivity, image contrast, and quantitative target intensity information for detecting small precancerous lesions in vivo.


Subject(s)
Endoscopy/methods , Image Processing, Computer-Assisted/methods , Molecular Imaging/methods , Optical Imaging/methods , Animals , Barrett Esophagus/pathology , Brain Chemistry , Esophagus/chemistry , Female , Male , Mice , Mice, SCID , Neoplasms, Experimental , Phantoms, Imaging , Swine
SELECTION OF CITATIONS
SEARCH DETAIL