Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Appl Opt ; 58(26): 7195-7204, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31503994

ABSTRACT

We present how a laser optical feedback imaging (LOFI) setup can be used for the optical detection of ultrasound in photo-acoustic tomography (PAT). A PAT image is reconstructed by an inversion algorithm using surface displacement measurements made at several locations with our LOFI setup and following the optical irradiation with a pulsed Nd:YAG laser of a sample with absorbing inclusions. The width of the reconstructed inclusions and the signal-to-noise ratio (SNR) of the reconstructed images are first studied on the numerical model of a sample with three absorbing inclusions (i.e., with three acoustic punctual sources). Finally, an experimental PAT image of a phantom composed of two polyamide tubes with an internal diameter of 800 µm filled with red ink and submerged at -3.5 mm depth in a tank filled with water is reconstructed. Experimentally, the water surface displacement measurements have been made with our LOFI vibrometer, which provides an amplitude sensitivity of 1 nm (for a single-shot measurement) in a detection bandwidth of roughly 1 MHz adapted to the detection of the polyamide tubes. Under our experimental conditions, the surface energy densities of the LOFI focalized beam for the detection and of the pulsed Nd:YAG laser used for the irradiation, are compatible with the maximum permissive exposure for future biomedical measurements. The SNR and the resolution of the reconstructed PAT images are in good agreement with the theoretical predictions.

2.
Appl Opt ; 57(26): 7634-7643, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30461833

ABSTRACT

This paper examines the detection of ultrasound vibrations with nanometric amplitude by using a laser optical feedback imaging (LOFI) setup. By means of numerical simulations, we show typical examples of ultrasound vibrations having different temporal shapes (harmonic and transient), extracted from the laser output power modulation induced by the frequency-shifted optical feedback. Considering the laser quantum noise dynamic and the detection noise separately, we show that the simulated vibration noise is in good agreement with the theoretical prediction. Also, we demonstrate that ultra-high frequencies (in the gigahertz range) can be detected by using a usual LOFI setup with a low-power laser (few mW) and a conventional detection with a usual white noise level. Then we show how the noise of a short transient vibration can be reduced by the reconstruction of its wide vibration spectrum by concatenation. Finally, the experimental detection of transient-harmonics ultrasound vibrations propagating in water and detected at the air/water interface is presented.

3.
Appl Opt ; 55(34): 9638-9647, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27958452

ABSTRACT

In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

SELECTION OF CITATIONS
SEARCH DETAIL