Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 282: 116695, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38981390

ABSTRACT

Microplastics (MPs) are recognized as a major environmental problem due to their ubiquitous presence in ecosystems and bioaccumulation in food chains. Not only humans are continuously exposed to these pollutants through ingestion and inhalation, but recent findings suggest they may trigger vascular inflammation and potentially worsen the clinical conditions of cardiovascular patients. Here we combine headspace analysis by needle trap microextraction-gas chromatography-mass spectrometry (HS-NTME-GC-MS) and biological assays to evaluate the effects of polystyrene, high- and low-density polyethylene MPs on phenotype, metabolic activity, and pro-inflammatory status of Vascular Smooth Muscle Cells (VSMCs) the most prominent cells in vascular walls. Virgin and artificially aged MPs (4 weeks at 40 °C and 750 W/m2 simulated solar irradiation) were comparatively tested at 1 mg/mL to simulate a realistic exposure scenario. Our results clearly show the activation of oxidative stress and inflammatory processes when VSMCs were cultured with aged polymers, with significant overexpression of IL-6 and TNF-α. In addition, volatile organic compounds (VOCs), including pentane, acrolein, propanal, and hexanal as the main components, were released by VSMCs into the headspace. Type-specific VOC response profiles were induced on vascular cells from different MPs.


Subject(s)
Gas Chromatography-Mass Spectrometry , Inflammation , Interleukin-6 , Microplastics , Oxidative Stress , Microplastics/toxicity , Inflammation/chemically induced , Oxidative Stress/drug effects , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Volatile Organic Compounds/toxicity , Polystyrenes/toxicity , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/cytology , Humans , Polyethylene/toxicity , Cells, Cultured , Myocytes, Smooth Muscle/drug effects
2.
Front Pharmacol ; 15: 1330374, 2024.
Article in English | MEDLINE | ID: mdl-38344172

ABSTRACT

Vascular calcification is a pathological chronic condition characterized by calcium crystal deposition in the vessel wall and is a recurring event in atherosclerosis, chronic kidney disease, and diabetes. The lack of effective therapeutic treatments opened the research to natural products, which have shown promising potential in inhibiting the pathological process in different experimental models. This study investigated the anti-calcifying effects of Quercetin and Berberine extracts on vascular smooth muscle cells (VSMCs) treated with an inorganic phosphate solution for 7 days. Quercetin has shown the highest anti-calcifying activity, as revealed by the intracellular quantitative assay and morphological analysis. Confocal microscopy revealed downregulation of RUNX2, a key marker for calcified phenotype, which was otherwise upregulated in calcified VSMCs. To investigate the anti-inflammatory activity of Quercetin, culture media were subjected to immunometric assays to quantify the levels of IL-6 and TNF-α, and the caspase-1 activity. As expected, calcified VSMCs released a large quantity of inflammatory mediators, significantly decreasing in the presence of Quercetin. In summary, our findings suggest that Quercetin counteracted calcification by attenuating the VSMC pathological phenotypic switch and reducing the inflammatory response. In our opinion, these preliminary in vitro findings could be the starting point for further investigations into the beneficial effects of Quercetin dietary supplementation against vascular calcification.

SELECTION OF CITATIONS
SEARCH DETAIL