Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(10): e0012042, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39365836

ABSTRACT

BACKGROUND: Serology (the detection of antibodies formed by the host against an infecting pathogen) is frequently used to assess current infections and past exposure to specific pathogens. However, the presence of cross-reactivity among host antibodies in serological data makes it challenging to interpret the patterns and draw reliable conclusions about the infecting pathogen or strain. METHODOLOGY/PRINCIPAL FINDINGS: In our study, we use microscopic agglutination test (MAT) serological data from three host species [California sea lion (Zalophus californianus), island fox (Urocyon littoralis), and island spotted skunk (Spilogale gracilis)] with confirmed infections to assess differences in cross-reactivity by host species and diagnostic laboratory. All host species are known to be infected with the same serovar of Leptospira interrogans. We find that absolute and relative antibody titer magnitudes vary systematically across host species and diagnostic laboratories. Despite being infected by the same Leptospira serovar, three host species exhibit different cross-reactivity profiles to a 5-serovar diagnostic panel. We also observe that the cross-reactive antibody titer against a non-infecting serovar can remain detectable after the antibody titer against the infecting serovar declines below detectable levels. CONCLUSIONS/SIGNIFICANCE: Cross-reactivity in serological data makes interpretation difficult and can lead to common pitfalls. Our results show that the highest antibody titer is not a reliable indicator of infecting serovar and highlight an intriguing role of host species in shaping reactivity patterns. On the other side, seronegativity against a given serovar does not rule out that serovar as the cause of infection. We show that titer magnitudes can be influenced by both host species and diagnostic laboratory, indicating that efforts to interpret absolute titers (e.g., as indicators of recent infection) must be calibrated to the system under study. Thus, we implore scientists and health officials using serological data for surveillance to interpret the data with caution.


Subject(s)
Agglutination Tests , Antibodies, Bacterial , Cross Reactions , Leptospirosis , Animals , Leptospirosis/immunology , Leptospirosis/diagnosis , Leptospirosis/veterinary , Leptospirosis/microbiology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Leptospira interrogans/immunology , Serologic Tests/methods , Leptospira/immunology
2.
Sci Rep ; 13(1): 14368, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658075

ABSTRACT

Leptospirosis, the most widespread zoonotic disease in the world, is broadly understudied in multi-host wildlife systems. Knowledge gaps regarding Leptospira circulation in wildlife, particularly in densely populated areas, contribute to frequent misdiagnoses in humans and domestic animals. We assessed Leptospira prevalence levels and risk factors in five target wildlife species across the greater Los Angeles region: striped skunks (Mephitis mephitis), raccoons (Procyon lotor), coyotes (Canis latrans), Virginia opossums (Didelphis virginiana), and fox squirrels (Sciurus niger). We sampled more than 960 individual animals, including over 700 from target species in the greater Los Angeles region, and an additional 266 sampled opportunistically from other California regions and species. In the five target species seroprevalences ranged from 5 to 60%, and infection prevalences ranged from 0.8 to 15.2% in all except fox squirrels (0%). Leptospira phylogenomics and patterns of serologic reactivity suggest that mainland terrestrial wildlife, particularly mesocarnivores, could be the source of repeated observed introductions of Leptospira into local marine and island ecosystems. Overall, we found evidence of widespread Leptospira exposure in wildlife across Los Angeles and surrounding regions. This indicates exposure risk for humans and domestic animals and highlights that this pathogen can circulate endemically in many wildlife species even in densely populated urban areas.


Subject(s)
Coyotes , Didelphis , Geraniaceae , Leptospira , Animals , Humans , Leptospira/genetics , Animals, Wild , Ecosystem , Mephitidae , Los Angeles , Animals, Domestic , Raccoons , Sciuridae
4.
medRxiv ; 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32511422

ABSTRACT

Traveller screening is being used to limit further global spread of 2019 novel coronavirus (nCoV) following its recent emergence. Here, we project the impact of different travel screening programs given remaining uncertainty around the values of key nCoV life history and epidemiological parameters. Even under best-case assumptions, we estimate that screening will miss more than half of infected travellers. Breaking down the factors leading to screening successes and failures, we find that most cases missed by screening are fundamentally undetectable, because they have not yet developed symptoms and are unaware they were exposed. These findings emphasize the need for measures to track travellers who become ill after being missed by a travel screening program. We make our model available for interactive use so stakeholders can explore scenarios of interest using the most up-to-date information. We hope these findings contribute to evidence-based policy to combat the spread of nCoV, and to prospective planning to mitigate future emerging pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL