Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Bioinform Adv ; 4(1): vbae123, 2024.
Article in English | MEDLINE | ID: mdl-39224838

ABSTRACT

Motivation: Latent unknown clustering integrating multi-omics data is a novel statistical model designed for multi-omics data analysis. It integrates omics data with exposures and an outcome through a latent cluster, elucidating how exposures influence processes reflected in multi-omics measurements, ultimately affecting an outcome. A significant challenge in multi-omics analysis is the issue of list-wise missingness. To address this, we extend the model to incorporate list-wise missingness within an integrated imputation framework, which can also handle sporadic missingness when necessary. Results: Simulation studies demonstrate that our integrated imputation approach produces consistent and less biased estimates, closely reflecting true underlying values. We applied this model to data from the ISGlobal/ATHLETE "Exposome Data Challenge Event" to explore the association between maternal exposure to hexachlorobenzene and childhood body mass index by integrating incomplete proteomics data from 1301 children. The model successfully estimated proteomics profiles for two clusters representing higher and lower body mass index, characterizing the potential profiles linking prenatal hexachlorobenzene levels and childhood body mass index. Availability and implementation: The proposed methods have been implemented in the R package LUCIDus. The source code is available at https://github.com/USCbiostats/LUCIDus.

2.
Environ Int ; 190: 108930, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39128376

ABSTRACT

BACKGROUND: Precision Health aims to revolutionize disease prevention by leveraging information across multiple omic datasets (multi-omics). However, existing methods generally do not consider personalized environmental risk factors (e.g., environmental pollutants). OBJECTIVE: To develop and apply a precision health framework which combines multiomic integration (including early, intermediate, and late integration, representing sequential stages at which omics layers are combined for modeling) with mediation approaches (including high-dimensional mediation to identify biomarkers, mediation with latent factors to identify pathways, and integrated/quasi-mediation to identify high-risk subpopulations) to identify novel biomarkers of prenatal mercury induced metabolic dysfunction-associated fatty liver disease (MAFLD), elucidate molecular pathways linking prenatal mercury with MAFLD in children, and identify high-risk children based on integrated exposure and multiomics data. METHODS: This prospective cohort study used data from 420 mother-child pairs from the Human Early Life Exposome (HELIX) project. Mercury concentrations were determined in maternal or cord blood from pregnancy. Cytokeratin 18 (CK-18; a MAFLD biomarker) and five omics layers (DNA Methylation, gene transcription, microRNA, proteins, and metabolites) were measured in blood in childhood (age 6-10 years). RESULTS: Each standard deviation increase in prenatal mercury was associated with a 0.11 [95% confidence interval: 0.02-0.21] standard deviation increase in CK-18. High dimensional mediation analysis identified 10 biomarkers linking prenatal mercury and CK-18, including six CpG sites and four transcripts. Mediation with latent factors identified molecular pathways linking mercury and MAFLD, including altered cytokine signaling and hepatic stellate cell activation. Integrated/quasi-mediation identified high risk subgroups of children based on unique combinations of exposure levels, omics profiles (driven by epigenetic markers), and MAFLD. CONCLUSIONS: Prenatal mercury exposure is associated with elevated liver enzymes in childhood, likely through alterations in DNA methylation and gene expression. Our analytic framework can be applied across many different fields and serve as a resource to help guide future precision health investigations.


Subject(s)
Mercury , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Mercury/blood , Child , Male , Prospective Studies , Environmental Pollutants/blood , Fatty Liver/chemically induced , Biomarkers/blood , Precision Medicine , Adult , Environmental Exposure , Maternal Exposure , Multiomics
4.
medRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39006440

ABSTRACT

To address the growing epidemic of liver disease, particularly in pediatric populations, it is crucial to identify modifiable risk factors for the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Per- and polyfluoroalkyl substances (PFAS) are persistent ubiquitous chemicals and have emerged as potential risk factors for liver damage. However, their impact on the etiology and severity of MASLD remains largely unexplored in humans. This study aims to bridge the gap between human and in vitro studies to understand how exposure to perfluoroheptanoic acid (PFHpA), one of the emerging PFAS replacements which accumulates in high concentrations in the liver, contributes to MASLD risk and progression. First, we showed that PFHpA plasma concentrations were significantly associated with increased risk of MASLD in obese adolescents. Further, we examined the impact of PFHpA on hepatic metabolism using 3D human liver spheroids and single-cell transcriptomics to identify major hepatic pathways affected by PFHpA. Next, we integrated the in vivo and in vitro multi-omics datasets with a novel statistical approach which identified signatures of proteins and metabolites associated with MASLD development triggered by PFHpA exposure. In addition to characterizing the contribution of PFHpA to MASLD progression, our study provides a novel strategy to identify individuals at high risk of PFHpA-induced MASLD and develop early intervention strategies. Notably, our analysis revealed that the proteomic signature exhibited a stronger correlation between both PFHpA exposure and MASLD risk compared to the metabolomic signature. While establishing a clear connection between PFHpA exposure and MASLD progression in humans, our study delved into the molecular mechanisms through which PFHpA disrupts liver metabolism. Our in vitro findings revealed that PFHpA primarily impacts lipid metabolism, leading to a notable increase of lipid accumulation in human hepatocytes after PFHpA exposure. Among the pathways involved in lipid metabolism in hepatocytes, regulation of lipid metabolism by PPAR-a showed a remarkable activation. Moreover, the translational research framework we developed by integrating human and in vitro data provided us biomarkers to identify individuals at a high risk of MASLD due to PFHpA exposure. Our framework can inform policies on PFAS-induced liver disease and identify potential targets for prevention and treatment strategies.

5.
Environ Res ; 259: 119496, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38936497

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that persist in the environment and can accumulate in humans, leading to adverse health effects. MicroRNAs (miRNAs) are emerging biomarkers that can advance the understanding of the mechanisms of PFAS effects on human health. However, little is known about the associations between PFAS exposures and miRNA alterations in humans. OBJECTIVE: To investigate associations between PFAS concentrations and miRNA levels in children. METHODS: Data from two distinct cohorts were utilized: 176 participants (average age 17.1 years; 75.6% female) from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort in the United States, and 64 participants (average age 6.5 years, 39.1% female) from the Rhea study, a mother-child cohort in Greece. PFAS concentrations and miRNA levels were assessed in plasma samples from both studies. Associations between individual PFAS and plasma miRNA levels were examined after adjusting for covariates. Additionally, the cumulative effects of PFAS mixtures were evaluated using an exposure burden score. Ingenuity Pathways Analysis was employed to identify potential disease functions of PFAS-associated miRNAs. RESULTS: Plasma PFAS concentrations were associated with alterations in 475 miRNAs in the Teen-LABs study and 5 miRNAs in the Rhea study (FDR p < 0.1). Specifically, plasma PFAS concentrations were consistently associated with decreased levels of miR-148b-3p and miR-29a-3p in both cohorts. Pathway analysis indicated that PFAS-related miRNAs were linked to numerous chronic disease pathways, including cardiovascular diseases, inflammatory conditions, and carcinogenesis. CONCLUSION: Through miRNA screenings in two independent cohorts, this study identified both known and novel miRNAs associated with PFAS exposure in children. Pathway analysis revealed the involvement of these miRNAs in several cancer and inflammation-related pathways. Further studies are warranted to enhance our understanding of the relationships between PFAS exposure and disease risks, with miRNA emerging as potential biomarkers and/or mediators in these complex pathways.


Subject(s)
Environmental Exposure , Environmental Pollutants , Fluorocarbons , MicroRNAs , Humans , MicroRNAs/blood , Female , Child , Fluorocarbons/blood , Male , Adolescent , Environmental Exposure/adverse effects , Environmental Pollutants/blood , Biomarkers/blood , Cohort Studies , United States , Greece , Longitudinal Studies
6.
Curr Environ Health Rep ; 11(3): 404-415, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38898328

ABSTRACT

PURPOSE OF REVIEW: Depression during the perinatal or antenatal period affects at least 1 in 10 women worldwide, with long term health implications for the mother and child. Concurrently, there is increasing evidence associating maternal exposure to per- and poly-fluoroalkyl substances (PFAS) to adverse pregnancy outcomes. We reviewed the body of evidence examining both the associations between PFAS exposure and perturbations in the maternal metabolome, and the associations between the maternal metabolome and perinatal/antenatal depression. Through this, we sought to explore existing evidence of the perinatal metabolome as a potential mediation pathway linking PFAS exposure and perinatal/antenatal depression. RECENT FINDINGS: There are few studies examining the metabolomics of PFAS exposure-specifically in pregnant women-and the metabolomics of perinatal/antenatal depression, let alone studies examining both simultaneously. Of the studies reviewed (N = 11), the majority were cross sectional, based outside of the US, and conducted on largely homogenous populations. Our review identified 23 metabolic pathways in the perinatal metabolome common to both PFAS exposure and perinatal/antenatal depression. Future studies may consider findings from our review to conduct literature-derived hypothesis testing focusing on fatty acid metabolism, alanine metabolism, glutamate metabolism, and tyrosine metabolism when exploring the biochemical mechanisms conferring the risk of perinatal/antenatal depression due to PFAS exposure. We recommend that researchers also utilize heterogenous populations, longitudinal study designs, and mediation approaches to elucidate key pathways linking PFAS exposures to perinatal/antenatal depression.


Subject(s)
Depression , Environmental Pollutants , Humans , Female , Pregnancy , Depression/chemically induced , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Maternal Exposure/adverse effects , Metabolome/drug effects , Pregnancy Complications/chemically induced , Metabolomics
7.
Environ Res ; 252(Pt 4): 119072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729411

ABSTRACT

BACKGROUND: Per- and poly-fluorinated compounds (PFAS) and heavy metals constitute two classes of environmental exposures with known immunotoxicant effects. In this pilot study, we aimed to evaluate the impact of exposure to heavy metals and PFAS on COVID-19 severity. We hypothesized that elevated plasma-PFAS concentrations and urinary heavy metal concentrations would be associated with increased odds of ICU admission in COVID-19 hospitalized individuals. METHODS: Using the University of Southern California Clinical Translational Sciences Institute (SC-CTSI) biorepository of hospitalized COVID-19 patients, urinary concentrations of 15 heavy metals and urinary creatinine were measured in n = 101 patients and plasma concentrations of 13 PFAS were measured in n = 126 patients. COVID-19 severity was determined based on whether a patient was admitted to the ICU during hospitalization. Associations of metals and PFAS with ICU admission were assessed using logistic regression models, controlling for age, sex, ethnicity, smoking status, and for metals, urinary dilution. RESULTS: The average age of patients was 55 ± 14.2 years. Among SC-CTSI participants with urinary measurement of heavy metals and blood measures of PFAS, 54.5% (n = 61) and 54.8% (n = 80) were admitted to the ICU, respectively. For heavy metals, we observed higher levels of Cd, Cr, and Cu in ICU patients. The strongest associations were with Cadmium (Cd). After accounting for covariates, each 1 SD increase in Cd resulted in a 2.00 (95% CI: 1.10-3.60; p = 0.03) times higher odds of admission to the ICU. When including only Hispanic or Latino participants, the effect estimates between cadmium and ICU admission remained similar. Results for PFAS were less consistent, with perfluorodecanesulfonic acid (PFDS) exhibiting a positive but non-significant association with ICU admission (Odds ratio, 95% CI: 1.50, 0.97-2.20) and perfluorodecanoic acid (PFDA) exhibiting a negative association with ICU admission (0.53, 0.31-0.88). CONCLUSIONS: This study supports the hypothesis that environmental exposures may impact COVID-19 severity.


Subject(s)
COVID-19 , Environmental Exposure , Environmental Pollutants , Hispanic or Latino , Metals, Heavy , Humans , Middle Aged , Male , Female , Hispanic or Latino/statistics & numerical data , Environmental Pollutants/urine , Environmental Pollutants/blood , Aged , Adult , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Metals, Heavy/urine , Metals, Heavy/blood , Risk Factors , Pilot Projects , Fluorocarbons/blood , Fluorocarbons/urine , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , SARS-CoV-2
8.
Sci Total Environ ; 930: 172840, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38685432

ABSTRACT

Exposure to per- and poly-fluoroalkyl substances (PFAS) is ubiquitous due to their persistence in the environment and in humans. Extreme weight loss has been shown to influence concentrations of circulating persistent organic pollutants (POPs). Using data from the multi-center perspective Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort, we investigated changes in plasma-PFAS in adolescents after bariatric surgery. Adolescents (Mean age = 17.1 years, SD = 1.5 years) undergoing bariatric surgery were enrolled in the Teen-LABS study. Plasma-PFAS were measured at the time of surgery and then 6-, 12-, and 36 months post-surgery. Linear mixed effect models were used to evaluate longitudinal changes in plasma-PFAS after the time of bariatric surgery. This study included 214 adolescents with severe obesity who had available longitudinal measures of plasma-PFAS and underwent bariatric surgery between 2007 and 2012. Underlying effects related to undergoing bariatric surgery were found to be associated with an initial increase or plateau in concentrations of circulating PFAS up to 6 months after surgery followed by a persistent decline in concentrations of 36 months (p < 0.001 for all plasma-PFAS). Bariatric surgery in adolescents was associated with a decline in circulating PFAS concentrations. Initially following bariatric surgery (0-6 months) concentrations were static followed by decline from 6 to 36 months following surgery. This may have large public health implications as PFAS are known to be associated with numerous metabolic related diseases and the significant reduction in circulating PFAS in individuals who have undergone bariatric surgery may be related to the improvement of such metabolic related diseases following bariatric surgery.


Subject(s)
Bariatric Surgery , Environmental Pollutants , Humans , Adolescent , Male , Female , Longitudinal Studies , Environmental Pollutants/blood , Environmental Exposure/statistics & numerical data , Fluorocarbons/blood , Obesity, Morbid/surgery , Obesity, Morbid/blood
9.
Environ Int ; 186: 108601, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537583

ABSTRACT

BACKGROUND: Strong epidemiological evidence shows positive associations between exposure to per- and polyfluoroalkyl substances (PFAS) and adverse cardiometabolic outcomes (e.g., diabetes, hypertension, and dyslipidemia). However, the underlying cardiometabolic-relevant biological activities of PFAS in humans remain largely unclear. AIM: We evaluated the associations of PFAS exposure with high-throughput proteomics in Hispanic youth. MATERIAL AND METHODS: We included 312 overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) between 2001 and 2012, along with 137 young adults from the Metabolic and Asthma Incidence Research (Meta-AIR) between 2014 and 2018. Plasma PFAS (i.e., PFOS, PFOA, PFHxS, PFHpS, PFNA) were quantified using liquid-chromatography high-resolution mass spectrometry. Plasma proteins (n = 334) were measured utilizing the proximity extension assay using an Olink Explore Cardiometabolic Panel I. We conducted linear regression with covariate adjustment to identify PFAS-associated proteins. Ingenuity Pathway Analysis, protein-protein interaction network analysis, and protein annotation were used to investigate alterations in biological functions and protein clusters. RESULTS: Results after adjusting for multiple comparisons showed 13 significant PFAS-associated proteins in SOLAR and six in Meta-AIR, sharing similar functions in inflammation, immunity, and oxidative stress. In SOLAR, PFNA demonstrated significant positive associations with the largest number of proteins, including ACP5, CLEC1A, HMOX1, LRP11, MCAM, SPARCL1, and SSC5D. After considering the mixture effect of PFAS, only SSC5D remained significant. In Meta-AIR, PFAS mixtures showed positive associations with GDF15 and IL6. Exploratory analysis showed similar findings. Specifically, pathway analysis in SOLAR showed PFOA- and PFNA-associated activation of immune-related pathways, and PFNA-associated activation of inflammatory response. In Meta-AIR, PFHxS-associated activation of dendric cell maturation was found. Moreover, PFAS was associated with common protein clusters of immunoregulatory interactions and JAK-STAT signaling in both cohorts. CONCLUSION: PFAS was associated with broad alterations of the proteomic profiles linked to pro-inflammation and immunoregulation. The biological functions of these proteins provide insight into potential molecular mechanisms of PFAS toxicity.


Subject(s)
Environmental Exposure , Environmental Pollutants , Fluorocarbons , Hispanic or Latino , Proteomics , Humans , Adolescent , Fluorocarbons/blood , Female , Male , Environmental Pollutants/blood , Young Adult
10.
Sci Rep ; 14(1): 7384, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548792

ABSTRACT

To assess cardiometabolic profiles and proteomics to identify biomarkers associated with the metabolically healthy and unhealthy obesity. Young adults (N = 156) enrolled were classified as not having obesity, metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO) based on NCEP ATP-III criteria. Plasma proteomics at study entry were measured using Olink Cardiometabolic Explore panel. Linear regression was used to assess associations between proteomics and obesity groups as well as cardiometabolic traits of glucose, insulin, and lipid profiles at baseline and follow-up visits. Enriched biological pathways were further identified based on the significant proteomic features. Among the baseline 95 (61%) and 61 (39%) participants classified as not having obesity and having obesity (8 MHO and 53 MUHO), respectively. Eighty of the participants were followed-up with an average 4.6 years. Forty-one proteins were associated with obesity (FDR < 0.05), 29 of which had strong associations with insulin-related traits and lipid profiles (FDR < 0.05). Inflammation, immunomodulation, extracellular matrix remodeling and endoplasmic reticulum lumen functions were enriched by 40 proteins. In this study population, obesity and MHO were associated with insulin resistance and dysregulated lipid profiles. The underlying mechanism included elevated inflammation and deteriorated extracellular matrix remodeling function.


Subject(s)
Cardiovascular Diseases , Obesity, Metabolically Benign , Humans , Young Adult , Proteomics , Obesity/metabolism , Phenotype , Inflammation/complications , Insulin , Lipids , Cardiovascular Diseases/epidemiology , Risk Factors , Body Mass Index
11.
World J Gastroenterol ; 30(4): 332-345, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38313232

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in children and adolescents. NAFLD ranges in severity from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), wherein hepatocellular inflammation and/or fibrosis coexist with steatosis. Circulating microRNA (miRNA) levels have been suggested to be altered in NAFLD, but the extent to which miRNA are related to NAFLD features remains unknown. This analysis tested the hypothesis that plasma miRNAs are significantly associated with histological features of NAFLD in adolescents. AIM: To investigate the relationship between plasma miRNA expression and NAFLD features among adolescents with NAFLD. METHODS: This study included 81 adolescents diagnosed with NAFLD and 54 adolescents without NAFLD from the Teen-Longitudinal Assessment of Bariatric Surgery study. Intra-operative core liver biopsies were collected from participants and used to characterize histological features of NAFLD. Plasma samples were collected during surgery for miRNA profiling. A total of 843 plasma miRNAs were profiled using the HTG EdgeSeq platform. We examined associations of plasma miRNAs and NAFLD features using logistic regression after adjusting for age, sex, race, and other key covariates. Ingenuity Pathways Analysis was used to identify biological functions of miRNAs that were associated with multiple histological features of NAFLD. RESULTS: We identified 16 upregulated plasma miRNAs, including miR-193a-5p and miR-193b-5p, and 22 downregulated plasma miRNAs, including miR-1282 and miR-6734-5p, in adolescents with NAFLD. Moreover, 52, 16, 15, and 9 plasma miRNAs were associated with NASH, fibrosis, ballooning degeneration, and lobular inflammation, respectively. Collectively, 16 miRNAs were associated with two or more histological features of NAFLD. Among those miRNAs, miR-411-5p was downregulated in NASH, ballooning, and fibrosis, while miR-122-5p, miR-1343-5p, miR-193a-5p, miR-193b-5p, and miR-7845-5p were consistently and positively associated with all histological features of NAFLD. Pathway analysis revealed that most common pathways of miRNAs associated with multiple NAFLD features have been associated with tumor progression, while we also identified linkages between miR-122-5p and hepatitis C virus and between miR-199b-5p and chronic hepatitis B. CONCLUSION: Plasma miRNAs were associated with NAFLD features in adolescent with severe obesity. Larger studies with more heterogeneous NAFLD phenotypes are needed to evaluate miRNAs as potential biomarkers of NAFLD.


Subject(s)
Circulating MicroRNA , MicroRNAs , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Child , Adolescent , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , Liver/pathology , Circulating MicroRNA/genetics , Circulating MicroRNA/metabolism , Obesity, Morbid/complications , Obesity, Morbid/surgery , Obesity, Morbid/metabolism , MicroRNAs/metabolism , Obesity/complications , Fibrosis , Inflammation/pathology
12.
Nutrients ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337712

ABSTRACT

The assessment of "omics" signatures may contribute to personalized medicine and precision nutrition. However, the existing literature is still limited in the homogeneity of participants' characteristics and in limited assessments of integrated omics layers. Our objective was to use post-prandial metabolomics and fasting proteomics to identify biological pathways and functions associated with diet quality in a population of primarily Hispanic young adults. We conducted protein and metabolite-wide association studies and functional pathway analyses to assess the relationships between a priori diet indices, Healthy Eating Index-2015 (HEI) and Dietary Approaches to Stop Hypertension (DASH) diets, and proteins (n = 346) and untargeted metabolites (n = 23,173), using data from the MetaAIR study (n = 154, 61% Hispanic). Analyses were performed for each diet quality index separately, adjusting for demographics and BMI. Five proteins (ACY1, ADH4, AGXT, GSTA1, F7) and six metabolites (undecylenic acid, betaine, hyodeoxycholic acid, stearidonic acid, iprovalicarb, pyracarbolid) were associated with both diets (p < 0.05), though none were significant after adjustment for multiple comparisons. Overlapping proteins are involved in lipid and amino acid metabolism and in hemostasis, while overlapping metabolites include amino acid derivatives, bile acids, fatty acids, and pesticides. Enriched biological pathways were involved in macronutrient metabolism, immune function, and oxidative stress. These findings in young Hispanic adults contribute to efforts to develop precision nutrition and medicine for diverse populations.


Subject(s)
Dietary Approaches To Stop Hypertension , Proteomics , Humans , Young Adult , Diet , Metabolomics , Amino Acids
13.
Can J Diabetes ; 48(4): 244-249.e1, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38341135

ABSTRACT

OBJECTIVES: Glycoprotein acetyls (GlycA's) are biomarkers of systemic inflammation and cardiovascular disease, yet little is known about their role in type 1 diabetes (T1D). In this study we examined the associations among GlycA's, central adiposity, insulin resistance, and early kidney injury in youth with T1D. METHODS: Glomerular filtration rate and renal plasma flow by iohexol and p-aminohippurate clearance, urine albumin-to-creatinine ratio (UACR), central adiposity by dual-energy x-ray absorptiometry, and estimated insulin sensitivity were assessed in 50 youth with T1D (16±3.0 years of age, 50% female, glycated hemoglobin 8.7%±1.3%, T1D duration 5.7±2.6 years). Concentrations of GlycA were quantified by targeted nuclear magnetic resonance spectroscopy. Correlation and multivariable linear regression analyses were performed. RESULTS: GlycA's were higher in girls vs boys (1.05±0.26 vs 0.84±0.15 mmol/L, p=0.001) and in participants living with overweight/obesity vs normal weight (1.12±0.23 vs 0.87±0.20 mmol/L, p=0.0004). GlycA's correlated positively with estimated intraglomerular pressure (r=0.52, p=0.001), UACR (r=0.53, p<0.0001), and trunk mass (r=0.45, p=0.001), and inversely with estimated insulin sensitivity (r=-0.36, p=0.01). All relationships remained significant after adjustment for age, sex, and glycated hemoglobin. CONCLUSIONS: As biomarkers of inflammation, GlycA's were higher in girls and those with overweight or obese body habitus in T1D. GlycA's associated with parameters of early kidney dysfunction, central adiposity, and insulin resistance.


Subject(s)
Albuminuria , Diabetes Mellitus, Type 1 , Insulin Resistance , Humans , Female , Male , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/physiopathology , Adolescent , Albuminuria/physiopathology , Biomarkers/blood , Child , Adiposity/physiology , Obesity, Abdominal/complications , Obesity, Abdominal/physiopathology , Glycoproteins/blood , Glomerular Filtration Rate , Young Adult
14.
Environ Int ; 185: 108454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316574

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are pollutants linked to adverse health effects. Diet is an important source of PFAS exposure, yet it is unknown how diet impacts longitudinal PFAS levels. OBJECTIVE: To determine if dietary intake and food sources were associated with changes in blood PFAS concentrations among Hispanic young adults at risk of metabolic diseases. METHODS: Predominantly Hispanic young adults from the Children's Health Study who underwent two visits (CHS; n = 123) and young adults from NHANES 2013-2018 who underwent one visit (n = 604) were included. Dietary data at baseline was collected using two 24-hour dietary recalls to measure individual foods and where foods were prepared/consumed (home/restaurant/fast-food). PFAS were measured in blood at both visits in CHS and cross-sectionally in NHANES. In CHS, multiple linear regression assessed associations of baseline diet with longitudinal PFAS; in NHANES, linear regression was used. RESULTS: In CHS, all PFAS except PFDA decreased across visits (all p < 0.05). In CHS, A 1-serving higher tea intake was associated with 24.8 %, 16.17 %, and 12.6 % higher PFHxS, PFHpS, and PFNA at follow-up, respectively (all p < 0.05). A 1-serving higher pork intake was associated with 13.4 % higher PFOA at follow-up (p < 0.05). Associations were similar in NHANES, including unsweetened tea, hot dogs, and processed meats. For food sources, in CHS each 200-gram increase in home-prepared food was associated with 0.90 % and 1.6 % lower PFOS at baseline and follow-up, respectively, and in NHANES was associated with 0.9 % lower PFDA (all p < 0.05). CONCLUSION: Results suggest that beverage consumption habits and food preparation are associated with differences in PFAS levels in young adults. This highlights the importance of diet in determining PFAS exposure and the necessity of public monitoring of foods and beverages for PFAS contamination.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Young Adult , Eating , Hispanic or Latino , Nutrition Surveys , Tea
15.
Environ Res ; 244: 117611, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38061983

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) may impair bone development in adolescence, which impacts life-long bone health. No previous studies have examined prospective associations of individual PFAS and their mixture with bone mineral density (BMD) changes in Hispanic young persons, a population at high risk of osteoporosis in adulthood. OBJECTIVES: To examine associations of individual PFAS and PFAS mixtures with longitudinal changes in BMD in an adolescent Hispanic cohort and examine generalizability of findings in a mixed-ethnicity young adult cohort (58.4% Hispanic). METHODS: Overweight/obese adolescents from the Study of Latino Adolescents at Risk of Type 2 Diabetes (SOLAR; n = 304; mean follow-up = 1.4 years) and young adults from the Southern California Children's Health Study (CHS; n = 137; mean follow-up = 4.1 years) were included in this study. Plasma PFAS were measured at baseline and dual x-ray absorptiometry scans were performed at baseline and follow-up to measure BMD. We estimated longitudinal associations between BMD and five PFAS via separate covariate-adjusted linear mixed effects models, and between BMD and the PFAS mixture via quantile g-computation. RESULTS: In SOLAR adolescents, baseline plasma perfluorooctanesulfonic acid (PFOS) was associated with longitudinal changes in BMD. Each doubling of PFOS was associated with an average -0.003 g/cm2 difference in change in trunk BMD per year over follow-up (95% CI: -0.005, -0.0002). Associations with PFOS persisted in CHS young adults, where each doubling of plasma PFOS was associated with an average -0.032 g/cm2 difference in total BMD at baseline (95% CI -0.062, -0.003), though longitudinal associations were non-significant. We did not find associations of other PFAS with BMD; associations of the PFAS mixture with BMD outcomes were primarily negative though non-significant. DISCUSSION: PFOS exposure was associated with lower BMD in adolescence and young adulthood, important periods for bone development, which may have implications on future bone health and risk of osteoporosis in adulthood.


Subject(s)
Alkanesulfonic Acids , Diabetes Mellitus, Type 2 , Environmental Pollutants , Fluorocarbons , Osteoporosis , Child , Humans , Adolescent , Young Adult , Adult , Bone Density , Cohort Studies , Environmental Pollutants/toxicity , Fluorocarbons/toxicity
16.
Environ Res ; 244: 117832, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38056610

ABSTRACT

BACKGROUND: Persistent organic pollutants (POPs) are chemicals characterized by their environmental persistence. Evidence suggests that exposure to POPs, which is ubiquitous, is associated with microRNA (miRNA) dysregulation. miRNA are key regulators in many physiological processes. It is thus of public health concern to understand the relationships between POPs and miRNA as related to health outcomes. OBJECTIVES: This systematic review evaluated the relationship between widely recognized, intentionally manufactured, POPs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB]), with miRNA expression in both human and animal studies. METHODS: We used PubMed and Embase to systematically search the literature up to September 29th, 2023. Search results for human and animal studies were included if they incorporated at least one POP of interest in relation to at least one miRNA. Data were synthesized to determine the direction and significance of associations between POPs and miRNA. We utilized ingenuity pathway analysis to review disease pathways for miRNA that were associated with POPs. RESULTS: Our search identified 38 eligible studies: 9 in humans and 29 in model organisms. PFAS were associated with decreased expression of miR-19, miR-193b, and miR-92b, as well as increased expression of miR-128, miR-199a-3p, and miR-26b across species. PCBs were associated with increased expression of miR-15a, miR-1537, miR-21, miR-22-3p, miR-223, miR-30b, and miR-34a, as well as decreased expression of miR-130a and let-7b in both humans and animals. Pathway analysis for POP-associated miRNA identified pathways related to carcinogenesis. DISCUSSION: This is the first systematic review of the association of POPs with miRNA in humans and model organisms. Large-scale prospective human studies are warranted to examine the role of miRNA as mediators between POPs and health outcomes.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , MicroRNAs , Pesticides , Polychlorinated Biphenyls , Animals , Humans , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/analysis , Halogenated Diphenyl Ethers/toxicity , Halogenated Diphenyl Ethers/analysis , Prospective Studies , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Pesticides/toxicity , Pesticides/analysis , Fluorocarbons/toxicity
17.
Diabetes Care ; 47(1): 151-159, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37971952

ABSTRACT

OBJECTIVE: Prediabetes in young people is an emerging epidemic that disproportionately impacts Hispanic populations. We aimed to develop a metabolite-based prediction model for prediabetes in young people with overweight/obesity at risk for type 2 diabetes. RESEARCH DESIGN AND METHODS: In independent, prospective cohorts of Hispanic youth (discovery; n = 143 without baseline prediabetes) and predominately Hispanic young adults (validation; n = 56 without baseline prediabetes), we assessed prediabetes via 2-h oral glucose tolerance tests. Baseline metabolite levels were measured in plasma from a 2-h postglucose challenge. In the discovery cohort, least absolute shrinkage and selection operator regression with a stability selection procedure was used to identify robust predictive metabolites for prediabetes. Predictive performance was evaluated in the discovery and validation cohorts using logistic regression. RESULTS: Two metabolites (allylphenol sulfate and caprylic acid) were found to predict prediabetes beyond known risk factors, including sex, BMI, age, ethnicity, fasting/2-h glucose, total cholesterol, and triglycerides. In the discovery cohort, the area under the receiver operator characteristic curve (AUC) of the model with metabolites and known risk factors was 0.80 (95% CI 0.72-0.87), which was higher than the risk factor-only model (AUC 0.63 [0.53-0.73]; P = 0.001). When the predictive models developed in the discovery cohort were applied to the replication cohort, the model with metabolites and risk factors predicted prediabetes more accurately (AUC 0.70 [95% CI 40.55-0.86]) than the same model without metabolites (AUC 0.62 [0.46-0.79]). CONCLUSIONS: Metabolite profiles may help improve prediabetes prediction compared with traditional risk factors. Findings suggest that medium-chain fatty acids and phytochemicals are early indicators of prediabetes in high-risk youth.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Adolescent , Young Adult , Humans , Diabetes Mellitus, Type 2/epidemiology , Prospective Studies , Longitudinal Studies , Risk Factors
18.
Environ Res ; 239(Pt 1): 117308, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37813138

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) are intentionally produced persistent organic pollutants (POPs) that are resistant to environmental degradation. Previous in-vitro and in-vivo studies have shown that POPs can induce oxidative stress, which is linked to neurodegenerative diseases, cardiovascular diseases, and cancer. However, findings in epidemiological studies are inconsistent and an evidence synthesis study is lacking to summarize the existing literature and explore research gaps. OBJECTIVE: We evaluated the effects of PFAS, PCBs, OCPs, and PBDEs, on oxidative stress biomarkers in epidemiological studies. METHODS: A literature search was conducted in PubMed, Embase, and Cochrane CENTRAL to identify all published studies related to POPs and oxidative stress up to December 7th, 2022. We included human observational studies reporting at least one exposure to POPs and an oxidative stress biomarker of interest. Random-effects meta-analyses on standardized regression coefficients and effect direction plots with one-tailed sign tests were used for quantitative synthesis. RESULTS: We identified 33 studies on OCPs, 35 on PCBs, 49 on PFAS, and 12 on PBDEs. Meta-analyses revealed significant positive associations of α-HCH with protein carbonyls (0.035 [0.017, 0.054]) and of 4'4-DDE with malondialdehyde (0.121 [0.056, 0.187]), as well as a significant negative association between 2'4-DDE and total antioxidant capacity (TAC) (-0.042 [-0.079, -0.004]), all ß [95%CI]. Sign tests showed a significant positive association between PCBs and malondialdehyde (pone-tailed = 0.03). Additionally, we found significant negative associations of OCPs with acetylcholine esterase (pone-tailed = 0.02) and paraoxonase-1 (pone-tailed = 0.03). However, there were inconsistent associations of OCPs with superoxide dismutase, glutathione peroxidase, and catalase. CONCLUSIONS: Higher levels of OCPs were associated with increased levels of oxidative stress through increased pro-oxidant biomarkers involving protein oxidation, DNA damage, and lipid peroxidation, as well as decreased TAC. These findings have the potential to reveal the underlying mechanisms of POPs toxicity.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Humans , Antioxidants , Biomarkers , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Halogenated Diphenyl Ethers/toxicity , Hydrocarbons, Chlorinated/toxicity , Malondialdehyde , Oxidative Stress , Pesticides/toxicity , Polychlorinated Biphenyls/toxicity
19.
Ecotoxicol Environ Saf ; 264: 115486, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37729806

ABSTRACT

BACKGROUND AND AIM: Ambient air pollution (AAP) exposure has been associated with altered blood lipids and liver fat in young adults. MicroRNAs regulate gene expression and may mediate these relationships. This work investigated associations between AAP exposure, serum microRNA networks, lipid profiles, and non-alcoholic fatty liver disease (NAFLD) risk in young adults. METHODS: Participants were 170 young adults (17-22 years) from the Meta-AIR cohort of the Children's Health Study (CHS). Residential AAP exposure (PM2.5, PM10, NO2, 8-hour maximum O3, redox-weighted oxidative capacity [Oxwt]) was spatially interpolated from monitoring stations via inverse-distance-squared weighting. Fasting serum lipids were assayed. Liver fat was imaged by MRI and NAFLD was defined by ≥ 5.5% hepatic fat fraction. Serum microRNAs were measured via NanoString and microRNA networks were constructed by weighted gene correlation network analysis. The first principal component of each network represented its expression profile. Multivariable mixed effects regression models adjusted for sociodemographic, behavioral, and clinical covariates; baseline CHS town code was a random effect. Effects estimates are scaled to one standard deviation of exposure. Mediation analysis explored microRNA profiles as potential mediators of exposure-outcome associations. DIANA-mirPATH identified overrepresented gene pathways targeted by miRNA networks. RESULTS: Prior-month Oxwt was associated with NAFLD (OR=3.45; p = 0.003) and inversely associated with microRNA Network A (ß = -0.016; p = 0.026). Prior-year NO2 was associated with non-HDL-cholesterol (ß = 7.13; p = 0.01) and inversely associated with miRNA Network A (ß = -0.019; p = 0.022). Network A expression was inversely associated with NAFLD (OR=0.35; p = 0.010) and non-HDL-C (ß = -6.94 mg/dL; p = 0.035). Network A members miR-199a/b-3p and miR-130a, which both target fatty acid synthase, mediated 21% of the association between prior-month Oxwt exposure with NAFLD (p = 0.048) and 23.3% of the association between prior-year NO2 exposure and non-HDL-cholesterol (p = 0.026), respectively. CONCLUSIONS: Exposure to AAP may contribute to adverse lipid profiles and NAFLD risk among young adults via altered expression of microRNA profiles.


Subject(s)
Air Pollutants , Environmental Pollutants , MicroRNAs , Non-alcoholic Fatty Liver Disease , Child , Humans , Young Adult , MicroRNAs/genetics , Air Pollutants/toxicity , Non-alcoholic Fatty Liver Disease/genetics , Lipid Metabolism/genetics , Nitrogen Dioxide
20.
J Interferon Cytokine Res ; 43(7): 307-313, 2023 07.
Article in English | MEDLINE | ID: mdl-37384921

ABSTRACT

Neurologic manifestations of postacute sequelae after SARS-CoV-2 infection (neuro-PASC) are common; however, the underlying drivers of those symptoms remain poorly understood. Prior work has postulated that immune dysregulation leads to ongoing neuroinflammation. We aimed to identify the cytokines involved in that immune dysregulation by comparing 37 plasma cytokine profiles among 20 case patients with neuro-PASC to 20 age- and gender-matched controls. Neuro-PASC cases were defined as individuals with self-reported persistent headache, general malaise, and anosmia or ageusia at least 28 days post-SARS-CoV-2 infection. As a sensitivity analysis, we repeated the main analysis among only participants of Hispanic heritage. In total, 40 specimens were tested. Participants were an average of 43.5 years old (interquartile range 30-52), 20 (50.0%) of whom identified as women. Levels of tumor necrosis factor alpha (TNFα) were 0.76 times lower [95% confidence interval (CI) 0.62-0.94] among cases of neuro-PASC compared with controls, as were levels of C-C motif chemokine 19 (CCL19) (0.67; 95% CI 0.50-0.91), C-C motif chemokine 2 (CCL2) (0.72; 95% CI 0.55-0.95), chemokine interferon-gamma inducible protein 10 (CXCL10) (0.63; 95% CI 0.42-0.96), and chemokine interferon-gamma inducible protein 9 (CXCL9) (0.62; 95% CI 0.38-0.99). Restricting analysis of TNF and CCL19 to participants who identified as Hispanic did not alter results. We noted a reduction in TNFα and down-stream chemokines among patients with neuro-PASC, suggesting an overall immune attenuation.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Humans , Female , Adult , SARS-CoV-2 , Interferon-gamma , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL