Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters








Publication year range
1.
Curr Biol ; 34(14): R682-R684, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39043140

ABSTRACT

A new analysis of cytokinetic furrow ingression in the Caenorhabditis elegans zygote at high spatiotemporal resolution demonstrates that, rather than being a process of steady, spatially uniform constriction, furrow ingression is modulated by complex contractile oscillations that move around the furrow, possibly in the form of propagating waves.


Subject(s)
Actomyosin , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Actomyosin/metabolism , Cytokinesis/physiology , Zygote/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics
2.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746143

ABSTRACT

The Rho GTPases pattern the cell cortex in a variety of fundamental cell-morphogenetic processes including division, wound repair, and locomotion. It has recently become apparent that this patterning arises from the ability of the Rho GTPases to self-organize into static and migrating spots, contractile pulses, and propagating waves in cells from yeasts to mammals 1 . These self-organizing Rho GTPase patterns have been explained by a variety of theoretical models which require multiple interacting positive and negative feedback loops. However, it is often difficult, if not impossible, to discriminate between different models simply because the available experimental data do not simultaneously capture the dynamics of multiple molecular concentrations and biomechanical variables at fine spatial and temporal resolution. Specifically, most studies typically provide either the total Rho GTPase signal or the Rho GTPase activity as reported by various sensors, but not both. Therefore, it remains largely unknown how membrane accumulation of Rho GTPases (i.e., Rho membrane enrichment) is related to Rho activity. Here we dissect the dynamics of RhoA by simultaneously imaging both total RhoA and active RhoA in the regime of acute cortical excitability 2 , characterized by pronounced waves of Rho activity and F-actin polymerization 3-5 . We find that within nascent waves, accumulation of active RhoA precedes that of total RhoA, and we exploit this finding to distinguish between two popular theoretical models previously used to explain propagating cortical Rho waves.

3.
Nat Rev Mol Cell Biol ; 25(4): 290-308, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38172611

ABSTRACT

The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.


Subject(s)
Cytoskeleton , rho GTP-Binding Proteins , rho GTP-Binding Proteins/metabolism , Cytoskeleton/metabolism , Actins/metabolism , Signal Transduction , Cell Movement , rac1 GTP-Binding Protein/metabolism
5.
Proc Natl Acad Sci U S A ; 120(22): e2300322120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216553

ABSTRACT

To initiate directed movement, cells must become polarized, establishing a protrusive leading edge and a contractile trailing edge. This symmetry-breaking process involves reorganization of cytoskeleton and asymmetric distribution of regulatory molecules. However, what triggers and maintains this asymmetry during cell migration remains largely elusive. Here, we established a micropatterning-based 1D motility assay to investigate the molecular basis of symmetry breaking required for directed cell migration. We show that microtubule (MT) detyrosination drives cell polarization by directing kinesin-1-based transport of the adenomatous polyposis coli (APC) protein to cortical sites. This is essential for the formation of cell's leading edge during 1D and 3D cell migration. These data, combined with biophysical modeling, unveil a key role for MT detyrosination in the generation of a positive feedback loop linking MT dynamics and kinesin-1-based transport. Thus, symmetry breaking during cell polarization relies on a feedback loop driven by MT detyrosination that supports directed cell migration.


Subject(s)
Kinesins , Microtubules , Kinesins/metabolism , Microtubules/metabolism , Cell Movement , Cytoskeleton/metabolism
6.
J Cell Biol ; 221(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35708547

ABSTRACT

Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, "chases" Rho waves in an F-actin-dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics.


Subject(s)
Actins , Cytoskeleton , GTPase-Activating Proteins , Proto-Oncogene Proteins , rho GTP-Binding Proteins , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cytokinesis , Cytoskeleton/metabolism , GTPase-Activating Proteins/metabolism , Oocytes , Proto-Oncogene Proteins/metabolism , Xenopus , rho GTP-Binding Proteins/metabolism
7.
Mol Biol Cell ; 33(8): ar73, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35594176

ABSTRACT

Interest in cortical excitability-the ability of the cell cortex to generate traveling waves of protein activity-has grown considerably over the past 20 years. Attributing biological functions to cortical excitability requires an understanding of the natural behavior of excitable waves and the ability to accurately quantify wave properties. Here we have investigated and quantified the onset of cortical excitability in Xenopus laevis eggs and embryos and the changes in cortical excitability throughout early development. We found that cortical excitability begins to manifest shortly after egg activation. Further, we identified a close relationship between wave properties-such as wave frequency and amplitude-and cell cycle progression as well as cell size. Finally, we identified quantitative differences between cortical excitability in the cleavage furrow relative to nonfurrow cortical excitability and showed that these wave regimes are mutually exclusive.


Subject(s)
Cortical Excitability , Animals , Cell Cycle , Cell Division , Cytoplasm , Xenopus laevis
8.
J Cell Biol ; 221(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35254388

ABSTRACT

Epithelial cell-cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed "Rho flares," but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli.


Subject(s)
Calcium , Tight Junctions , rhoA GTP-Binding Protein , Calcium/metabolism , Calcium Channels/metabolism , Epithelial Cells/metabolism , Signal Transduction , Tight Junctions/metabolism , rhoA GTP-Binding Protein/metabolism
9.
Curr Biol ; 31(24): 5613-5621.e5, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34739819

ABSTRACT

The cell cortex, comprised of the plasma membrane and underlying cytoskeleton, undergoes dynamic reorganizations during a variety of essential biological processes including cell adhesion, cell migration, and cell division.1,2 During cell division and cell locomotion, for example, waves of filamentous-actin (F-actin) assembly and disassembly develop in the cell cortex in a process termed "cortical excitability."3-7 In developing frog and starfish embryos, cortical excitability is generated through coupled positive and negative feedback, with rapid activation of Rho-mediated F-actin assembly followed in space and time by F-actin-dependent inhibition of Rho.7,8 These feedback loops are proposed to serve as a mechanism for amplification of active Rho signaling at the cell equator to support furrowing during cytokinesis while also maintaining flexibility for rapid error correction in response to movement of the mitotic spindle during chromosome segregation.9 In this paper, we develop an artificial cortex based on Xenopus egg extract and supported lipid bilayers (SLBs), to investigate cortical Rho and F-actin dynamics.10 This reconstituted system spontaneously develops two distinct types of self-organized cortical dynamics: singular excitable Rho and F-actin waves, and non-traveling oscillatory Rho and F-actin patches. Both types of dynamic patterns have properties and dependencies similar to the excitable dynamics previously characterized in vivo.7 These findings directly support the long-standing speculation that the cell cortex is a self-organizing structure and present a novel approach for investigating mechanisms of Rho-GTPase-mediated cortical dynamics.


Subject(s)
Actins , Artificial Cells , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cytokinesis , Spindle Apparatus/metabolism , rho GTP-Binding Proteins/metabolism
10.
Mol Biol Cell ; 32(16): 1501-1513, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34081537

ABSTRACT

Actin-based protrusions vary in morphology, stability, and arrangement on cell surfaces. Microridges are laterally elongated protrusions on mucosal epithelial cells, where they form evenly spaced, mazelike patterns that dynamically remodel by fission and fusion. To characterize how microridges form their highly ordered, subcellular patterns and investigate the mechanisms driving fission and fusion, we imaged microridges in the maturing skin of zebrafish larvae. After their initial development, microridge spacing and alignment became increasingly well ordered. Imaging F-actin and non-muscle myosin II (NMII) revealed that microridge fission and fusion were associated with local NMII activity in the apical cortex. Inhibiting NMII blocked fission and fusion rearrangements, reduced microridge density, and altered microridge spacing. High-resolution imaging allowed us to image individual NMII minifilaments in the apical cortex of cells in live animals, revealing that minifilaments are tethered to protrusions and often connect adjacent microridges. NMII minifilaments connecting the ends of two microridges fused them together, whereas minifilaments oriented perpendicular to microridges severed them or pulled them closer together. These findings demonstrate that as cells mature, cortical NMII activity orchestrates a remodeling process that creates an increasingly orderly microridge arrangement.


Subject(s)
Actins/metabolism , Cytoskeleton/metabolism , Epithelial Cells/physiology , Myosin Type II/metabolism , Animals , Epithelial Cells/cytology , Epithelial Cells/metabolism , Zebrafish
11.
Curr Biol ; 31(10): R553-R559, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34033789

ABSTRACT

As the interface between the cell and its environment, the cell cortex must be able to respond to a variety of external stimuli. This is made possible in part by cortical excitability, a behavior driven by coupled positive and negative feedback loops that generate propagating waves of actin assembly in the cell cortex. Cortical excitability is best known for promoting cell protrusion and allowing the interpretation of and response to chemoattractant gradients in migrating cells. It has recently become apparent, however, that cortical excitability is involved in the response of the cortex to internal signals from the cell-cycle regulatory machinery and the spindle during cell division. Two overlapping functions have been ascribed to cortical excitability in cell division: control of cell division plane placement, and amplification of the activity of the small GTPase Rho at the equatorial cortex during cytokinesis. Here, we propose that cortical excitability explains several important yet poorly understood features of signaling during cell division. We also consider the potential advantages that arise from the use of cortical excitability as a signaling mechanism to regulate cortical dynamics in cell division.


Subject(s)
Actins , Cytokinesis , Actins/metabolism , Cell Division , Cytoplasm/metabolism , Signal Transduction
12.
J Cell Biol ; 220(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33656555

ABSTRACT

The polarisome is a cortical proteinaceous microcompartment that organizes the growth of actin filaments and the fusion of secretory vesicles in yeasts and filamentous fungi. Polarisomes are compact, spotlike structures at the growing tips of their respective cells. The molecular forces that control the form and size of this microcompartment are not known. Here we identify a complex between the polarisome subunit Pea2 and the type V Myosin Myo2 that anchors Myo2 at the cortex of yeast cells. We discovered a point mutation in the cargo-binding domain of Myo2 that impairs the interaction with Pea2 and consequently the formation and focused localization of the polarisome. Cells carrying this mutation grow round instead of elongated buds. Further experiments and biophysical modeling suggest that the interactions between polarisome-bound Myo2 motors and dynamic actin filaments spatially focus the polarisome and sustain its compact shape.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Cell Polarity/genetics , Cell Polarity/physiology , Fungi/metabolism , Fungi/physiology , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Mutation/genetics , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Myosin Type V/genetics , Myosin Type V/metabolism , Protein Binding/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Secretory Vesicles/metabolism , Secretory Vesicles/physiology
13.
Cells ; 10(1)2021 01 07.
Article in English | MEDLINE | ID: mdl-33430209

ABSTRACT

The concept of "symmetry breaking" has become a mainstay of modern biology, yet you will not find a definition of this concept specific to biological systems in Wikipedia [...].


Subject(s)
Cells/metabolism , Developmental Biology , Animals , Cell Polarity , Cell Surface Extensions/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Morphogenesis
15.
Cells ; 9(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32882972

ABSTRACT

Cellular morphogenesis is governed by the prepattern based on the symmetry-breaking emergence of dense protein clusters. Thus, a cluster of active GTPase Cdc42 marks the site of nascent bud in the baker's yeast. An important biological question is which mechanisms control the number of pattern maxima (spots) and, thus, the number of nascent cellular structures. Distinct flavors of theoretical models seem to suggest different predictions. While the classical Turing scenario leads to an array of stably coexisting multiple structures, mass-conserved models predict formation of a single spot that emerges via the greedy competition between the pattern maxima for the common molecular resources. Both the outcome and the kinetics of this competition are of significant biological importance but remained poorly explored. Recent theoretical analyses largely addressed these questions, but their results have not yet been fully appreciated by the broad biological community. Keeping mathematical apparatus and jargon to the minimum, we review the main conclusions of these analyses with their biological implications in mind. Focusing on the specific example of pattern formation by small GTPases, we speculate on the features of the patterning mechanisms that bypass competition and favor formation of multiple coexisting structures and contrast them with those of the mechanisms that harness competition to form unique cellular structures.


Subject(s)
Body Patterning/physiology , Cell Polarity/physiology , Models, Biological , Monomeric GTP-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Feedback, Physiological
16.
Soft Matter ; 16(38): 8775-8781, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32857081

ABSTRACT

We study the dynamics of pattern formation in a minimal model for active mixtures made of microtubules and molecular motors. We monitor the evolution of the (conserved) microtubule density and of the (non-conserved) nematic order parameter, focusing on the effects of an "anchoring" term that provides a direct coupling between the preferred microtubule direction and their density gradient. The key control parameter is the ratio between activity and elasticity. When elasticity dominates, the interplay between activity and anchoring leads to formation of banded structures that can undergo additional bending, rotational or splaying instabilities. When activity dominates, the nature of anchoring instead gives rise to a range of active cellular solids, including aster-like networks, disordered foams and spindle-like patterns. We speculate that the introduced "active model C" with anchoring is a minimal model to describe pattern formation in a biomimetic analogue of the microtubule cytoskeleton.

17.
J Cell Biol ; 219(3)2020 03 02.
Article in English | MEDLINE | ID: mdl-32003768

ABSTRACT

Cellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures that are arranged in maze-like patterns on the apical surfaces of zebrafish skin cells. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A nonmuscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex, and inhibiting NMII blocked apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex can pattern 3D cell surfaces.


Subject(s)
Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Cell Surface Extensions/metabolism , Epithelial Cells/metabolism , Myosin Type II/metabolism , Skin/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Actin Cytoskeleton/genetics , Actomyosin/genetics , Animals , Animals, Genetically Modified , Biomechanical Phenomena , Morphogenesis , Myosin Type II/genetics , Skin/embryology , Surface Tension , Time Factors , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
18.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-31583084

ABSTRACT

Small GTPases are organizers of a plethora of cellular processes. The time and place of their activation are tightly controlled by the localization and activation of their regulators, guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Remarkably, in some systems, the upstream regulators of GTPases are also found downstream of their activity. Resulting feedback loops can generate complex spatiotemporal dynamics of GTPases with important functional consequences. Here we discuss the concept of positive autoregulation of small GTPases by the GEF-effector feedback modules and survey recent developments in this exciting area of cell biology.


Subject(s)
GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Monomeric GTP-Binding Proteins/metabolism , Feedback , Humans
19.
Soft Matter ; 15(30): 6038-6043, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31298679

ABSTRACT

We study the dynamics and phase behaviour of a dry suspension of microtubules and molecular motors. We obtain a set of continuum equations by rigorously coarse graining a microscopic model where motor-induced interactions lead to parallel or antiparallel ordering. Through numerical simulations, we show that this model generically creates either stable stripes, or a never-settling pattern where stripes periodically form, rotate and then split up. We derive a minimal model which displays the same instability as the full model, and clarifies the underlying physical mechanism. The necessary ingredients are an extensile flux arising from microtubule sliding and an interfacial torque favouring ordering along density gradients. We argue that our minimal model unifies various previous observations of chaotic behaviour in dry active matter into a general universality class.

20.
Mol Biol Cell ; 30(14): 1645-1654, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31091161

ABSTRACT

Mitotic spindles are well known to be assembled from and dependent on microtubules. In contrast, whether actin filaments (F-actin) are required for or are even present in mitotic spindles has long been controversial. Here we have developed improved methods for simultaneously preserving F-actin and microtubules in fixed samples and exploited them to demonstrate that F-actin is indeed associated with mitotic spindles in intact Xenopus laevis embryonic epithelia. We also find that there is an "F-actin cycle," in which the distribution and organization of spindle F-actin changes over the course of the cell cycle. Live imaging using a probe for F-actin reveals that at least two pools of F-actin are associated with mitotic spindles: a relatively stable internal network of cables that moves in concert with and appears to be linked to spindles, and F-actin "fingers" that rapidly extend from the cell cortex toward the spindle and make transient contact with the spindle poles. We conclude that there is a robust endoplasmic F-actin network in normal vertebrate epithelial cells and that this network is also a component of mitotic spindles. More broadly, we conclude that there is far more internal F-actin in epithelial cells than is commonly believed.


Subject(s)
Actins/metabolism , Epithelium/metabolism , Spindle Apparatus/metabolism , Xenopus laevis/metabolism , Animals , Cell Survival , Endoplasmic Reticulum/metabolism , Epithelial Cells/metabolism , Formins/metabolism , Spindle Poles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL