Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Math Biosci ; 374: 109228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851528

ABSTRACT

Chronic pain is a major cause of disability and suffering in osteoarthritis (OA) patients. Endogenous specialised pro-resolving molecules (SPMs) curtail pro-inflammatory responses. One of the SPM intermediate oxylipins, 17-hydroxydocasahexaenoic acid (17-HDHA, a metabolite of docosahexaenoic acid (DHA)), is significantly associated with OA pain. The aim of this multidisciplinary work is to develop a mathematical model to describe the contributions of enzymatic pathways (and the genes that encode them) to the metabolism of DHA by monocytes and to the levels of the down-stream metabolites, 17-HDHA and 14-hydroxydocasahexaenoic acid (14-HDHA), motivated by novel clinical data from a study involving 30 participants with OA. The data include measurements of oxylipin levels, mRNA levels, measures of OA severity and self-reported pain scores. We propose a system of ordinary differential equations to characterise associations between the different datasets, in order to determine the homeostatic concentrations of DHA, 17-HDHA and 14-HDHA, dependent upon the gene expression of the associated metabolic enzymes. Using parameter-fitting methods, local sensitivity and uncertainty analysis, the model is shown to fit well qualitatively to experimental data. The model suggests that up-regulation of some ALOX genes may lead to the down-regulation of 17-HDHA and that dosing with 17-HDHA increases the production of resolvins, which helps to down-regulate the inflammatory response. More generally, we explore the challenges and limitations of modelling real data, in particular individual variability, and also discuss the value of gathering additional experimental data motivated by the modelling insights.


Subject(s)
Docosahexaenoic Acids , Monocytes , Osteoarthritis , Docosahexaenoic Acids/metabolism , Humans , Osteoarthritis/metabolism , Monocytes/metabolism , Models, Biological , Pain/metabolism
2.
Metabolomics ; 16(3): 32, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32108917

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) is the most common form of joint disease, causing pain and disability. Previous studies have demonstrated the role of lipid mediators in OA pathogenesis. OBJECTIVES: To explore potential alterations in the plasma lipidomic profile in an established mouse model of OA, with a view to identification of potential biomarkers of pain and/or pathology. METHODS: Pain behaviour was assessed following destabilisation of the medial meniscus (DMM) model of OA (n = 8 mice) and compared to sham controls (n = 7). Plasma and knee joints were collected at 16 weeks post-surgery. Plasma samples were analysed using ultra-high performance liquid chromatography accurate mass high resolution mass spectrometry (UHPLC-HR-MS) to identify potential differences in the lipidome, using multivariate and univariate statistical analyses. Correlations between pain behaviour, joint pathology and levels of lipids were investigated. RESULTS: 24 lipids, predominantly from the lipid classes of cholesterol esters (CE), fatty acids (FA), phosphatidylcholines (PC), N-acylethanolamines (NAE) and sphingomyelins (SM), were differentially expressed in DMM plasma compared to sham plasma. Six of these lipids which were increased in the DMM model were identified as CE(18:2), CE(20:4), CE(22:6), PC(18:0/18:2), PC(38:7) and SM(d34:1). CEs were positively correlated with pain behaviour and all six lipid species were positively correlated with cartilage damage. Pathways shown to be involved in altered lipid homeostasis in OA were steroid biosynthesis and sphingolipid metabolism. CONCLUSION: We identify plasma lipid species associated with pain and/or pathology in a DMM model of OA.


Subject(s)
Disease Models, Animal , Lipidomics , Lipids/blood , Osteoarthritis/blood , Pain/blood , Animals , Chromatography, High Pressure Liquid , Lipids/isolation & purification , Male , Mass Spectrometry , Metabolomics , Mice , Mice, Inbred C57BL , Osteoarthritis/metabolism , Osteoarthritis/pathology , Pain/metabolism , Pain/pathology , Pain Measurement
SELECTION OF CITATIONS
SEARCH DETAIL